Which expression is equivalent to [tex]\(30\left(\frac{1}{2}x - 2\right) + 40\left(\frac{3}{4}y - 4\right)\)[/tex]?

A. [tex]\(45xy - 220\)[/tex]

B. [tex]\(15x - 30y - 220\)[/tex]

C. [tex]\(15x + 30y - 220\)[/tex]



Answer :

To solve the expression [tex]\( 30 \left( \frac{1}{2} x - 2 \right) + 40 \left( \frac{3}{4} y - 4 \right) \)[/tex], let's break it down step by step.

1. Expand each term inside the parentheses:

[tex]\[ 30 \left( \frac{1}{2} x - 2 \right) \quad \text{and} \quad 40 \left( \frac{3}{4} y - 4 \right) \][/tex]

2. Distribute the coefficients:

[tex]\[ 30 \left( \frac{1}{2} x \right) - 30 \cdot 2 \quad \text{and} \quad 40 \left( \frac{3}{4} y \right) - 40 \cdot 4 \][/tex]

3. Multiply the terms:

[tex]\[ 30 \cdot \frac{1}{2} x - 60 \quad \text{and} \quad 40 \cdot \frac{3}{4} y - 160 \][/tex]

4. Simplify the expressions:

[tex]\[ 15x - 60 \quad \text{and} \quad 30y - 160 \][/tex]

5. Combine like terms (constants) and put the expression together:

[tex]\[ 15x - 60 + 30y - 160 \][/tex]

6. Simplify by combining the constants:

[tex]\[ 15x + 30y - 220 \][/tex]

Thus, the expression equivalent to [tex]\( 30 \left( \frac{1}{2} x - 2 \right) + 40 \left( \frac{3}{4} y - 4 \right) \)[/tex] is:

[tex]\[ 15x + 30y - 220 \][/tex]

So, the correct answer is:

[tex]\[ \boxed{15x + 30y - 220} \][/tex]