Which linear function represents the line given by the point-slope equation [tex]\(y - 8 = \frac{1}{2}(x - 4)\)[/tex]?

A. [tex]\( f(x) = \frac{1}{2}x + 4 \)[/tex]

B. [tex]\( f(x) = \frac{1}{2}x + 6 \)[/tex]

C. [tex]\( f(x) = \frac{1}{2}x - 10 \)[/tex]

D. [tex]\( f(x) = \frac{1}{2}x - 12 \)[/tex]



Answer :

To determine which linear function represents the given point-slope equation [tex]\( y - 8 = \frac{1}{2}(x - 4) \)[/tex], we need to convert it into the slope-intercept form, [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.

1. Start with the point-slope equation:
[tex]\[ y - 8 = \frac{1}{2}(x - 4) \][/tex]

2. Distribute [tex]\(\frac{1}{2}\)[/tex] on the right side of the equation:
[tex]\[ y - 8 = \frac{1}{2} \cdot x - \frac{1}{2} \cdot 4 \][/tex]
Simplifying the multiplication on the right side:
[tex]\[ y - 8 = \frac{1}{2} x - 2 \][/tex]

3. Add 8 to both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y - 8 + 8 = \frac{1}{2} x - 2 + 8 \][/tex]
Simplifying this gives:
[tex]\[ y = \frac{1}{2} x + 6 \][/tex]

So, the function that represents the line is:
[tex]\[ f(x) = \frac{1}{2} x + 6 \][/tex]

Therefore, the correct linear function is:
[tex]\[ f(x)=\frac{1}{2} x+6 \][/tex]