Given the functions [tex]\( f(x) = 8x \)[/tex] and [tex]\( g(x) = x - 4 \)[/tex], find [tex]\( f(g(x)) \)[/tex].

[tex]\( f(g(x)) = 8(x - 4) \)[/tex]

Simplify the expression:

[tex]\( f(g(x)) = 8x - 32 \)[/tex]



Answer :

To find [tex]\( f(g(x)) \)[/tex], we'll substitute the function [tex]\( g(x) \)[/tex] into the function [tex]\( f(x) \)[/tex]. Let's work through the problem step-by-step:

1. Given Functions:
[tex]\[ f(x) = 8x \][/tex]
[tex]\[ g(x) = x - 4 \][/tex]

2. Find [tex]\( f(g(x)) \)[/tex]:

This means we need to substitute [tex]\( g(x) \)[/tex] into [tex]\( f(x) \)[/tex].

3. Substitute [tex]\( g(x) = x - 4 \)[/tex] into [tex]\( f(x) \)[/tex]:
[tex]\[ f(g(x)) = f(x - 4) \][/tex]

4. Evaluate [tex]\( f(x - 4) \)[/tex]:
[tex]\[ f(x - 4) = 8(x - 4) \][/tex]

5. Distribute the 8:
[tex]\[ 8(x - 4) = 8x - 32 \][/tex]

Therefore, the composition of the functions [tex]\( f \)[/tex] and [tex]\( g \)[/tex], denoted [tex]\( f(g(x)) \)[/tex], is:
[tex]\[ f(g(x)) = 8x - 32 \][/tex]

So the final answer is:
[tex]\[ 8x - 32 \][/tex]