To find [tex]\( h(x) \)[/tex], we need to add the functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex].
1. Let's start by expanding both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[
f(x) = 2x - 1
\][/tex]
[tex]\[
g(x) = 7x - 12
\][/tex]
2. Now, let's add [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] together to get [tex]\( h(x) \)[/tex]:
[tex]\[
h(x) = f(x) + g(x)
\][/tex]
Substituting [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[
h(x) = (2x - 1) + (7x - 12)
\][/tex]
Combine the like terms:
[tex]\[
h(x) = 2x + 7x - 1 - 12
\][/tex]
[tex]\[
h(x) = 9x - 13
\][/tex]
So, the correct expression for [tex]\( h(x) \)[/tex] is:
[tex]\[
h(x) = 9x - 13
\][/tex]
Therefore, the correct answer is [tex]\( h(x) = 9x - 13 \)[/tex].