Answered

Complete the following statement:

If [tex]\( f(x) = 2x^2 + 5\sqrt{x-2} \)[/tex], then [tex]\( f(6) = \)[/tex] _________.

Answer here:



Answer :

To solve the problem of finding the value of [tex]\( f(x) \)[/tex] when [tex]\( x = 6 \)[/tex] given the function [tex]\( f(x) = 2x^2 + 5 \sqrt{x - 2} \)[/tex], we need to follow these steps:

1. Identify the function and the value of [tex]\( x \)[/tex]:
[tex]\[ f(x) = 2x^2 + 5 \sqrt{x - 2} \][/tex]
Here, [tex]\( x = 6 \)[/tex].

2. Substitute [tex]\( x = 6 \)[/tex] into the function:
First, replace [tex]\( x \)[/tex] with 6 in the function:
[tex]\[ f(6) = 2(6)^2 + 5 \sqrt{6 - 2} \][/tex]

3. Calculate the value inside the square root:
[tex]\[ \sqrt{6 - 2} = \sqrt{4} = 2 \][/tex]

4. Square [tex]\( 6 \)[/tex] and multiply by 2:
[tex]\[ 2(6)^2 = 2 \times 36 = 72 \][/tex]

5. Multiply the square root result by 5:
[tex]\[ 5 \times 2 = 10 \][/tex]

6. Add the two results together to find [tex]\( f(6) \)[/tex]:
[tex]\[ f(6) = 72 + 10 = 82 \][/tex]

Therefore, the value of [tex]\( f(6) \)[/tex] is [tex]\( 82 \)[/tex].