Answer :
Let's analyze the given system of equations and the corresponding matrix representation of the system.
We have the system of equations:
[tex]\[ \begin{array}{l} 3x - 4y = -9 \\ 7y = 24 \end{array} \][/tex]
To write this as a matrix equation, we need to represent it in the form [tex]\( A \mathbf{x} = \mathbf{b} \)[/tex], where [tex]\(A\)[/tex] is the coefficient matrix, [tex]\(\mathbf{x}\)[/tex] is the column matrix of variables, and [tex]\(\mathbf{b}\)[/tex] is the constant matrix.
Given the system:
[tex]\[ \begin{array}{l} 3x - 4y = -9 \\ 7y = 24 \end{array} \][/tex]
We identify the coefficients of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] for each equation and place them in a matrix [tex]\( A \)[/tex]. The variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex] form the column matrix [tex]\(\mathbf{x}\)[/tex], and the constants on the right side of the equations form the matrix [tex]\(\mathbf{b}\)[/tex].
From the system above, we have:
[tex]\[ A = \begin{pmatrix} 3 & -4 \\ 0 & 7 \end{pmatrix} \][/tex]
The column matrix of variables is:
[tex]\[ \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} \][/tex]
And the constant matrix is:
[tex]\[ \mathbf{b} = \begin{pmatrix} -9 \\ 24 \end{pmatrix} \][/tex]
So the matrix equation is:
[tex]\[ \begin{pmatrix} 3 & -4 \\ 0 & 7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -9 \\ 24 \end{pmatrix} \][/tex]
Comparing this with the given options, we find that the correct answer is:
[tex]\[ \left[\begin{array}{cc}3 & -4 \\ 0 & 7\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}-9 \\ 24\end{array}\right] \][/tex]
We have the system of equations:
[tex]\[ \begin{array}{l} 3x - 4y = -9 \\ 7y = 24 \end{array} \][/tex]
To write this as a matrix equation, we need to represent it in the form [tex]\( A \mathbf{x} = \mathbf{b} \)[/tex], where [tex]\(A\)[/tex] is the coefficient matrix, [tex]\(\mathbf{x}\)[/tex] is the column matrix of variables, and [tex]\(\mathbf{b}\)[/tex] is the constant matrix.
Given the system:
[tex]\[ \begin{array}{l} 3x - 4y = -9 \\ 7y = 24 \end{array} \][/tex]
We identify the coefficients of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] for each equation and place them in a matrix [tex]\( A \)[/tex]. The variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex] form the column matrix [tex]\(\mathbf{x}\)[/tex], and the constants on the right side of the equations form the matrix [tex]\(\mathbf{b}\)[/tex].
From the system above, we have:
[tex]\[ A = \begin{pmatrix} 3 & -4 \\ 0 & 7 \end{pmatrix} \][/tex]
The column matrix of variables is:
[tex]\[ \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} \][/tex]
And the constant matrix is:
[tex]\[ \mathbf{b} = \begin{pmatrix} -9 \\ 24 \end{pmatrix} \][/tex]
So the matrix equation is:
[tex]\[ \begin{pmatrix} 3 & -4 \\ 0 & 7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -9 \\ 24 \end{pmatrix} \][/tex]
Comparing this with the given options, we find that the correct answer is:
[tex]\[ \left[\begin{array}{cc}3 & -4 \\ 0 & 7\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}-9 \\ 24\end{array}\right] \][/tex]