Calculate the mass of the object using the formula [tex]\( m = \frac{2KE}{v^2} \)[/tex].

Matthew rolls a bowling ball with a speed of 2 meters/second. The ball hits the pins with 1.8 joules of kinetic energy. The mass of the bowling ball is ______ kilograms.



Answer :

To determine the mass of the bowling ball, we can use the formula for kinetic energy:

[tex]\[ KE = \frac{1}{2}mv^2 \][/tex]

Rearranging this formula to solve for mass [tex]\( m \)[/tex], we get:

[tex]\[ m = \frac{2KE}{v^2} \][/tex]

Given values:
- [tex]\( KE = 1.8 \)[/tex] joules
- [tex]\( v = 2 \)[/tex] meters per second

Plug these values into the formula:

[tex]\[ m = \frac{2 \times 1.8}{2^2} \][/tex]

First, calculate the square of the velocity:

[tex]\[ 2^2 = 4 \][/tex]

Next, multiply the kinetic energy by 2:

[tex]\[ 2 \times 1.8 = 3.6 \][/tex]

Now, divide by the square of the velocity:

[tex]\[ m = \frac{3.6}{4} = 0.9 \][/tex]

Thus, the mass of the bowling ball is [tex]\( \boxed{0.9} \)[/tex] kilograms.