A relative frequency table is made from data in a frequency table.

Frequency Table

| | G | H | Total |
|---|----|----|-------|
| E | 12 | 11 | 23 |
| F | 14 | 8 | 22 |
| Total | 26 | 19 | 45 |

Relative Frequency Table

| | G | H | Total |
|---|----|-----|-------|
| E | y | 24% | 51% |

What is the value of [tex]\( y \)[/tex] in the relative frequency table? Round the answer to the nearest percent.

A. 12%

B. 27%

C. 46%

D. 52%



Answer :

To determine the value of [tex]\( y \)[/tex] in the relative frequency table, we need to calculate the relative frequency of the value corresponding to [tex]\( E \)[/tex] and [tex]\( G \)[/tex], and then express it as a percentage rounded to the nearest whole number.

Let's break it down step-by-step:

1. Identify the given data:
- The frequency of [tex]\( E \)[/tex] and [tex]\( G \)[/tex] is [tex]\( 12 \)[/tex].
- The total frequency of [tex]\( E \)[/tex] is [tex]\( 23 \)[/tex].

2. Calculate the relative frequency:
[tex]\[ \text{Relative frequency of } E \text{ and } G = \frac{\text{frequency of } E \text{ and } G}{\text{total frequency of } E} \times 100 \][/tex]
Plugging in the values:
[tex]\[ \text{Relative frequency of } E \text{ and } G = \frac{12}{23} \times 100 \][/tex]

3. Convert the fraction to a percentage:
[tex]\[ \frac{12}{23} \approx 0.5217391304347826 \][/tex]
Converting to a percentage:
[tex]\[ 0.5217391304347826 \times 100 = 52.17391304347826\% \][/tex]

4. Round the result:
When we round [tex]\( 52.17391304347826\% \)[/tex] to the nearest whole number, we get [tex]\( 52\% \)[/tex].

So, the value of [tex]\( y \)[/tex] in the relative frequency table is [tex]\( 52\% \)[/tex].

The correct answer is:
[tex]\[ \boxed{52\%} \][/tex]