Which of the following is the simplified form of [tex]\( \sqrt[7]{x} \cdot \sqrt[7]{x} \cdot \sqrt[7]{x} \)[/tex]?

A. [tex]\( x \)[/tex]
B. [tex]\( x^{3/7} \)[/tex]
C. [tex]\( x^{7/3} \)[/tex]
D. [tex]\( x^{1/3} \)[/tex]



Answer :

Sure! Let's simplify the expression [tex]\(\sqrt[7]{x} \cdot 7^7 \cdot \sqrt[7]{x} \cdot \sqrt[7]{x}\)[/tex] step-by-step.

1. Expression Breakdown:
We start with [tex]\(\sqrt[7]{x} \cdot 7^7 \cdot \sqrt[7]{x} \cdot \sqrt[7]{x}\)[/tex].

2. Rewrite the Radicals as Exponents:
Recall that [tex]\(\sqrt[7]{x}\)[/tex] can be written as [tex]\(x^{1/7}\)[/tex]. Thus, we can rewrite the expression as:
[tex]\[ x^{1/7} \cdot 7^7 \cdot x^{1/7} \cdot x^{1/7} \][/tex]

3. Combine Like Terms:
By the properties of exponents, we can combine [tex]\(x^{1/7}\)[/tex] terms:
[tex]\[ x^{1/7} \cdot x^{1/7} \cdot x^{1/7} = x^{1/7 + 1/7 + 1/7} = x^{3/7} \][/tex]

4. Substitute and Simplify:
Replacing back into the original expression, we get:
[tex]\[ 7^7 \cdot x^{3/7} \][/tex]

5. Final Simplified Form:
The final simplified form of the expression [tex]\(\sqrt[7]{x} \cdot 7^7 \cdot \sqrt[7]{x} \cdot \sqrt[7]{x}\)[/tex] is:
[tex]\[ 823543 \cdot x^{3/7} \][/tex]

So, the simplified form of the given expression is:
[tex]\[ 823543 \cdot x^{3/7} \][/tex]

Therefore, the correct choice among the given options would be [tex]\(823543 \cdot x^{3/7}\)[/tex].