What is the x-intercept of the graph of the equation [tex]\( y = -2x + 6 \)[/tex] in the [tex]\( xy \)[/tex]-plane?

A. [tex]\((0,6)\)[/tex]
B. [tex]\((1,4)\)[/tex]
C. [tex]\((2,2)\)[/tex]
D. [tex]\((3,0)\)[/tex]



Answer :

Sure! Let's find the [tex]\( x \)[/tex]-intercept of the equation [tex]\( y = -2x + 6 \)[/tex].

The [tex]\( x \)[/tex]-intercept is the point where the graph intersects the [tex]\( x \)[/tex]-axis. At the [tex]\( x \)[/tex]-intercept, the value of [tex]\( y \)[/tex] is 0. So we set [tex]\( y = 0 \)[/tex] and solve for [tex]\( x \)[/tex]:

1. Start with the given equation:
[tex]\[ y = -2x + 6 \][/tex]

2. Set [tex]\( y = 0 \)[/tex] because at the [tex]\( x \)[/tex]-intercept, [tex]\( y \)[/tex] is zero:
[tex]\[ 0 = -2x + 6 \][/tex]

3. Solve for [tex]\( x \)[/tex] by isolating [tex]\( x \)[/tex]:
[tex]\[ -2x + 6 = 0 \][/tex]
[tex]\[ -2x = -6 \][/tex]
[tex]\[ x = 3 \][/tex]

So, the [tex]\( x \)[/tex]-intercept is at the point [tex]\((3, 0)\)[/tex]. Therefore, the correct answer is:

[tex]\((3, 0)\)[/tex]