What is the value of [tex]\( x \)[/tex] in the equation [tex]\( 3x - 4y = 65 \)[/tex] when [tex]\( y = 4 \)[/tex]?

A. [tex]\( x = 13 \frac{1}{4} \)[/tex]
B. [tex]\( x = 21 \frac{2}{3} \)[/tex]
C. [tex]\( x = 23 \)[/tex]



Answer :

To find the value of [tex]\( x \)[/tex] in the equation [tex]\( 3x - 4y = 65 \)[/tex] when [tex]\( y = 4 \)[/tex], we follow these steps:

1. Substitute the value of [tex]\( y \)[/tex] into the equation:
[tex]\[ 3x - 4(4) = 65 \][/tex]

2. Simplify the equation:
[tex]\[ 3x - 16 = 65 \][/tex]

3. Solve for [tex]\( x \)[/tex]:
[tex]\[ 3x - 16 + 16 = 65 + 16 \][/tex]
[tex]\[ 3x = 81 \][/tex]

4. Divide both sides by 3 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{81}{3} \][/tex]
[tex]\[ x = 27 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 27 \)[/tex].

This value does not match any of the provided options, which means there might be an issue with the given choices or the provided values. Please double-check the given options again.