Solve for [tex]\( y \)[/tex] in the equation below. Round your answer to the nearest hundredth. Do not round any intermediate computations.

[tex]\[ 12^{9y} = 7 \][/tex]



Answer :

To solve for [tex]\( y \)[/tex] in the equation [tex]\( 12^{9y} = 7 \)[/tex], we can use logarithms to simplify and solve the equation. Here's a detailed, step-by-step solution:

1. Take the natural logarithm (ln) of both sides of the equation, which will help us bring the exponent down:
[tex]\[ \ln(12^{9y}) = \ln(7) \][/tex]

2. Use the power rule of logarithms to bring down the exponent [tex]\( 9y \)[/tex]:
[tex]\[ 9y \cdot \ln(12) = \ln(7) \][/tex]

3. Isolate [tex]\( y \)[/tex] by dividing both sides of the equation by [tex]\( 9 \cdot \ln(12) \)[/tex]:
[tex]\[ y = \frac{\ln(7)}{9 \cdot \ln(12)} \][/tex]

4. Calculate the natural logarithms of the numbers involved.
[tex]\[ \ln(7) \approx 1.9459101490553132 \][/tex]
[tex]\[ \ln(12) \approx 2.4849066497880004 \][/tex]

5. Substitute these values back into the equation:
[tex]\[ y = \frac{1.9459101490553132}{9 \cdot 2.4849066497880004} \][/tex]

6. Perform the multiplication in the denominator:
[tex]\[ 9 \cdot 2.4849066497880004 = 22.364159848092 \][/tex]

7. Now, divide the numerator by the result of the denominator:
[tex]\[ y = \frac{1.9459101490553132}{22.364159848092} \approx 0.08701020571632734 \][/tex]

8. Round the result to the nearest hundredth:
[tex]\[ y \approx 0.09 \][/tex]

So, the value of [tex]\( y \)[/tex] rounded to the nearest hundredth is [tex]\( \boxed{0.09} \)[/tex].