The table represents a function.

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $f(x)$ \\
\hline
-6 & 3 \\
\hline
-2 & 1 \\
\hline
0 & 4 \\
\hline
3 & -2 \\
\hline
\end{tabular}
\][/tex]

What is [tex]\( f(-2) \)[/tex]?

A. [tex]\(-3\)[/tex]

B. [tex]\(-1\)[/tex]

C. 1

D. 3



Answer :

To find the value of [tex]\( f(-2) \)[/tex] from the given table, we need to locate the row where [tex]\( x \)[/tex] is equal to [tex]\(-2\)[/tex] and read the corresponding [tex]\( f(x) \)[/tex] value.

Here's the detailed step-by-step process:

1. Examine the Table:
The given table lists pairs of [tex]\( x \)[/tex] and [tex]\( f(x) \)[/tex]:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -6 & 3 \\ \hline -2 & 1 \\ \hline 0 & 4 \\ \hline 3 & -2 \\ \hline \end{array} \][/tex]

2. Identify the Desired Value:
We need to find [tex]\( f(x) \)[/tex] when [tex]\( x \)[/tex] is [tex]\(-2\)[/tex].

3. Locate [tex]\( x = -2 \)[/tex]:
Look at the row where [tex]\( x \)[/tex] is [tex]\(-2\)[/tex]:

[tex]\[ \begin{array}{|c|c|} \hline -2 & 1 \\ \hline \end{array} \][/tex]

4. Read the Corresponding [tex]\( f(x) \)[/tex] Value:
The value corresponding to [tex]\( x = -2 \)[/tex] is [tex]\( f(-2) = 1 \)[/tex].

Thus, the value of [tex]\( f(-2) \)[/tex] is

[tex]\[ 1 \][/tex]

Therefore, the correct answer is [tex]\( \boxed{1} \)[/tex].