Consider the function represented by the table:

| x | f(x) |
|----|------|
| -7 | -3 |
| -3 | 5 |
| 2 | -4 |
| 4 | -8 |

For which [tex]\( x \)[/tex] is [tex]\( f(x) = 3 \)[/tex]?

A. -7
B. -4
C. 4
D. 5



Answer :

Let's consider the given table, which represents a function [tex]\( f(x) \)[/tex]:

[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $f(x)$ \\ \hline -7 & -3 \\ \hline -3 & 5 \\ \hline 2 & -4 \\ \hline 4 & -8 \\ \hline \end{tabular} \][/tex]

We are asked to find which [tex]\( x \)[/tex] corresponds to [tex]\( f(x) = 3 \)[/tex]. To solve this, we need to verify each given value [tex]\( x \)[/tex] in the function and check if it maps to [tex]\( f(x) = 3 \)[/tex].

Let's check the function values against [tex]\( f(x) = 3 \)[/tex]:

1. For [tex]\( x = -7 \)[/tex]:
[tex]\[ f(-7) = -3 \][/tex]
This does not equal 3.

2. For [tex]\( x = -3 \)[/tex]:
[tex]\[ f(-3) = 5 \][/tex]
This does not equal 3.

3. For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = -4 \][/tex]
This does not equal 3.

4. For [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = -8 \][/tex]
This does not equal 3.

Since none of the [tex]\( x \)[/tex] values in the given table map to [tex]\( f(x) = 3 \)[/tex], there is no [tex]\( x \)[/tex] for which [tex]\( f(x) = 3 \)[/tex] within the provided data.

Thus, the answer is:

[tex]\[ \boxed{\text{None}} \][/tex]