Let's consider the given table, which represents a function [tex]\( f(x) \)[/tex]:
[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $f(x)$ \\
\hline
-7 & -3 \\
\hline
-3 & 5 \\
\hline
2 & -4 \\
\hline
4 & -8 \\
\hline
\end{tabular}
\][/tex]
We are asked to find which [tex]\( x \)[/tex] corresponds to [tex]\( f(x) = 3 \)[/tex]. To solve this, we need to verify each given value [tex]\( x \)[/tex] in the function and check if it maps to [tex]\( f(x) = 3 \)[/tex].
Let's check the function values against [tex]\( f(x) = 3 \)[/tex]:
1. For [tex]\( x = -7 \)[/tex]:
[tex]\[
f(-7) = -3
\][/tex]
This does not equal 3.
2. For [tex]\( x = -3 \)[/tex]:
[tex]\[
f(-3) = 5
\][/tex]
This does not equal 3.
3. For [tex]\( x = 2 \)[/tex]:
[tex]\[
f(2) = -4
\][/tex]
This does not equal 3.
4. For [tex]\( x = 4 \)[/tex]:
[tex]\[
f(4) = -8
\][/tex]
This does not equal 3.
Since none of the [tex]\( x \)[/tex] values in the given table map to [tex]\( f(x) = 3 \)[/tex], there is no [tex]\( x \)[/tex] for which [tex]\( f(x) = 3 \)[/tex] within the provided data.
Thus, the answer is:
[tex]\[
\boxed{\text{None}}
\][/tex]