The table represents a function.

| [tex]\( x \)[/tex] | [tex]\( f(x) \)[/tex] |
|--------|-----------|
| -4 | -2 |
| -1 | 5 |
| 3 | 4 |
| 5 | -8 |

What is [tex]\( f(5) \)[/tex]?

A. -8
B. -1
C. 1
D. 8



Answer :

To determine the value of [tex]\( f(5) \)[/tex] from the given table, we simply need to identify the row where [tex]\( x = 5 \)[/tex] and then note the corresponding [tex]\( f(x) \)[/tex] value in that row.

The table is as follows:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -4 & -2 \\ \hline -1 & 5 \\ \hline 3 & 4 \\ \hline 5 & -8 \\ \hline \end{array} \][/tex]

From the table:
- When [tex]\( x = -4 \)[/tex], [tex]\( f(x) = -2 \)[/tex]
- When [tex]\( x = -1 \)[/tex], [tex]\( f(x) = 5 \)[/tex]
- When [tex]\( x = 3 \)[/tex], [tex]\( f(x) = 4 \)[/tex]
- When [tex]\( x = 5 \)[/tex], [tex]\( f(x) = -8 \)[/tex]

Therefore, the value of [tex]\( f(5) \)[/tex] is [tex]\( -8 \)[/tex].

Among the provided options:
- [tex]\(-8\)[/tex]
- [tex]\(-1\)[/tex]
- [tex]\(1\)[/tex]
- [tex]\(8\)[/tex]

The correct answer is [tex]\(\boxed{-8}\)[/tex].