To determine the total hours worked per day by 5 employees, given that each employee works [tex]\( 6 \frac{4}{15} \)[/tex] hours per day, follow these steps:
1. Convert the mixed number [tex]\( 6 \frac{4}{15} \)[/tex] into an improper fraction:
[tex]\[
6 \frac{4}{15} = 6 + \frac{4}{15}
\][/tex]
This can be rewritten as:
[tex]\[
6 + \frac{4}{15} = \frac{90}{15} + \frac{4}{15} = \frac{90 + 4}{15} = \frac{94}{15}
\][/tex]
2. Multiply the fraction [tex]\( \frac{94}{15} \)[/tex] by the number of employees, which is 5:
[tex]\[
5 \times \frac{94}{15} = \frac{5 \times 94}{15} = \frac{470}{15}
\][/tex]
3. Simplify the fraction [tex]\( \frac{470}{15} \)[/tex] by performing the division:
[tex]\[
\frac{470}{15} \approx 31.3333\ldots
\][/tex]
In mixed number form, [tex]\( 31.3333\ldots \)[/tex] is written as [tex]\( 31 \frac{1}{3} \)[/tex].
Thus, the correct answer is:
C. [tex]\( 31 \frac{1}{3} \)[/tex]