What is the [tex]\( y \)[/tex]-intercept of [tex]\( f(x) = 3^{x+2} \)[/tex]?

A. [tex]\((9,0)\)[/tex]
B. [tex]\((0,9)\)[/tex]
C. [tex]\((0,-9)\)[/tex]
D. [tex]\((9,-9)\)[/tex]



Answer :

To find the [tex]\( y \)[/tex]-intercept of the function [tex]\( f(x) = 3^{x+2} \)[/tex], we need to determine the value of the function when [tex]\( x = 0 \)[/tex].

1. Start by substituting [tex]\( x = 0 \)[/tex] into the function [tex]\( f(x) = 3^{x+2} \)[/tex]:
[tex]\[ f(0) = 3^{0+2} \][/tex]

2. Simplify the exponent:
[tex]\[ f(0) = 3^2 \][/tex]

3. Evaluate [tex]\( 3^2 \)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]

Therefore, when [tex]\( x = 0 \)[/tex], [tex]\( f(x) = 9 \)[/tex]. The [tex]\( y \)[/tex]-intercept is the point where the graph of the function crosses the [tex]\( y \)[/tex]-axis, which occurs at [tex]\( (0, f(0)) \)[/tex]. Hence, the [tex]\( y \)[/tex]-intercept is [tex]\( (0, 9) \)[/tex].

The correct answer is:
B. [tex]\((0, 9)\)[/tex]