Let's solve the problem step by step:
1. Determine the initial number of tortes prepared:
The chef prepared 5 tortes.
2. Calculate the number of tortes consumed in fractional form:
The guests consumed [tex]\(\frac{25}{16}\)[/tex] tortes.
3. Calculate the number of tortes left:
Subtract the number of tortes consumed from the initial number of tortes prepared.
[tex]\[
\text{Tortes left} = 5 - \frac{25}{16}
\][/tex]
4. Convert 5 to a fraction with the same denominator (16):
[tex]\[
5 = \frac{80}{16}
\][/tex]
5. Perform the subtraction:
[tex]\[
\text{Tortes left} = \frac{80}{16} - \frac{25}{16} = \frac{55}{16}
\][/tex]
6. Express [tex]\( \frac{55}{16} \)[/tex] as a mixed number:
[tex]\[
\frac{55}{16} = 3 \frac{7}{16}
\][/tex]
So, the number of tortes left is [tex]\(3 \frac{7}{16}\)[/tex].
Now, let's identify the correct answer from the given choices:
A. [tex]\(2 \frac{9}{16}\)[/tex]
B. [tex]\(\frac{311}{16}\)[/tex]
C. [tex]\(\frac{211}{16}\)[/tex]
D. [tex]\(3 \frac{7}{16}\)[/tex]
The correct choice is:
D. [tex]\(3 \frac{7}{16}\)[/tex]