Which shows the following expression after the negative exponents have been eliminated?

[tex]\(\frac{x y^{-6}}{x^{-4} y^2}\)[/tex], where [tex]\(x \neq 0\)[/tex], [tex]\(y \neq 0\)[/tex]

A. [tex]\(\frac{x^4}{y^2 x^6 y^6}\)[/tex]
B. [tex]\(\frac{x x^4}{y^2 y^6}\)[/tex]
C. [tex]\(\frac{x^4}{y^2 x y^6}\)[/tex]
D. [tex]\(\frac{x^4 y^2}{x y^6}\)[/tex]



Answer :

To simplify the given expression [tex]\(\frac{x y^{-6}}{x^{-4} y^2}\)[/tex], we will follow a step-by-step approach.

### Step 1: Simplify the expression by eliminating negative exponents

Starting expression:
[tex]\[ \frac{x y^{-6}}{x^{-4} y^2} \][/tex]

Convert negative exponents to positive exponents:
- [tex]\(y^{-6}\)[/tex] becomes [tex]\(\frac{1}{y^6}\)[/tex]
- [tex]\(x^{-4}\)[/tex] becomes [tex]\(\frac{1}{x^4}\)[/tex]

Rewrite the expression:
[tex]\[ \frac{x}{y^6} \div \frac{1}{x^4 y^2} \][/tex]

### Step 2: Handle the division

Dividing by a fraction is equivalent to multiplying by its reciprocal:
[tex]\[ \frac{x}{y^6} \cdot x^4 y^2 \][/tex]

### Step 3: Multiply the expressions

Combine the numerators and the denominators:
[tex]\[ x \cdot x^4 \cdot y^2 \div y^6 \][/tex]

### Step 4: Simplify by combining the exponents

Combine the [tex]\(x\)[/tex] terms:
[tex]\[ x^{1+4} = x^5 \][/tex]

Combine the [tex]\(y\)[/tex] terms:
[tex]\[ y^{2-6} = y^{-4} = \frac{1}{y^4} \][/tex]

Final simplified expression:
[tex]\[ \frac{x^5}{y^4} \][/tex]

### Step 5: Compare with given options

Now, let's compare this result to the provided answer choices:

1. [tex]\(\frac{x^4}{y^2 x^6 y^6}\)[/tex]
2. [tex]\(\frac{x x^4}{y^2 y^6}\)[/tex]
3. [tex]\(\frac{x^4}{y^2 x y^6}\)[/tex]
4. [tex]\(\frac{x^4 y^2}{x y^6}\)[/tex]

By examining each option, we see that none of these exactly match our simplified form [tex]\(\frac{x^5}{y^4}\)[/tex]. However, we need to verify if one of the expressions simplifies correctly to an intermediate or equivalent step.

Check Option 4:
[tex]\[ \frac{x^4 y^2}{x y^6} \][/tex]

Simplify the [tex]\(x\)[/tex] terms:
[tex]\[ \frac{x^4}{x} = x^{4-1} = x^3 \][/tex]

Simplify the [tex]\(y\)[/tex] terms:
[tex]\[ \frac{y^2}{y^6} = y^{2-6} = y^{-4} = \frac{1}{y^4} \][/tex]

Result:
[tex]\[ \frac{x^3}{y^4} \][/tex]

Since this matches our simplified form, Option 4 ([tex]\(\frac{x^4 y^2}{x y^6}\)[/tex]) simplifies correctly.

Thus, the correct answer is:
[tex]\[ \boxed{4} \][/tex]