What is the product of [tex]\((3a + 2)(4a^2 - 2a + 9)\)[/tex]?

A. [tex]\(12a^3 - 2a + 18\)[/tex]
B. [tex]\(12a^3 + 6a + 9\)[/tex]
C. [tex]\(12a^3 - 6a^2 + 23a + 18\)[/tex]
D. [tex]\(12a^3 + 2a^2 + 23a + 10\)[/tex]



Answer :

To find the product of the expressions [tex]\((3a + 2)(4a^2 - 2a + 9)\)[/tex], we will perform polynomial multiplication, specifically the distributive property (also known as the FOIL method for binomials).

Let’s go through the multiplication step by step:

### Step 1: Distribute [tex]\(3a\)[/tex] to each term in [tex]\(4a^2 - 2a + 9\)[/tex]:

[tex]\[ 3a \cdot 4a^2 = 12a^3 \][/tex]
[tex]\[ 3a \cdot (-2a) = -6a^2 \][/tex]
[tex]\[ 3a \cdot 9 = 27a \][/tex]

So, distributing [tex]\(3a\)[/tex] gives the partial result:

[tex]\[ 12a^3 - 6a^2 + 27a \][/tex]

### Step 2: Distribute [tex]\(2\)[/tex] to each term in [tex]\(4a^2 - 2a + 9\)[/tex]:

[tex]\[ 2 \cdot 4a^2 = 8a^2 \][/tex]
[tex]\[ 2 \cdot (-2a) = -4a \][/tex]
[tex]\[ 2 \cdot 9 = 18 \][/tex]

So, distributing [tex]\(2\)[/tex] gives another partial result:

[tex]\[ 8a^2 - 4a + 18 \][/tex]

### Step 3: Combine all the partial results:

Now, add the results from both distributions together:

[tex]\[ (12a^3 - 6a^2 + 27a) + (8a^2 - 4a + 18) \][/tex]

Combine the like terms:

[tex]\[ 12a^3 + (-6a^2 + 8a^2) + (27a - 4a) + 18 \][/tex]

Simplify the coefficients:

[tex]\[ 12a^3 + 2a^2 + 23a + 18 \][/tex]

The correct product of [tex]\((3a + 2)(4a^2 - 2a + 9)\)[/tex] is:

[tex]\[ 12a^3 + 2a^2 + 23a + 18 \][/tex]

So, the correct answer is:

[tex]\[ 12a^3 + 2a^2 + 23a + 18 \][/tex]