To find the [tex]\(y\)[/tex]-coordinate of the point that divides the directed line segment [tex]\(\overline{XY}\)[/tex] in a 5:3 ratio, use the formula:

[tex]\[ y = \left(\frac{a}{a+b}\right) (y_2 - y_1) + y_1 \][/tex]

Given:
- [tex]\(X(-10, -1)\)[/tex]
- [tex]\(Y(5, 15)\)[/tex]
- [tex]\(a = 5\)[/tex]
- [tex]\(b = 3\)[/tex]

Calculate [tex]\(y\)[/tex]:
[tex]\[ y = \left(\frac{5}{5+3}\right) (15 - (-1)) + (-1) \][/tex]

What is the [tex]\(y\)[/tex]-coordinate of the point that divides [tex]\(\overline{XY}\)[/tex] into a 5:3 ratio?

A. 1
B. 2
C. 9



Answer :

To find the [tex]\( y \)[/tex]-coordinate of the point that divides the line segment [tex]\(\overline{XY}\)[/tex] with endpoints [tex]\( X(-10, -1) \)[/tex] and [tex]\( Y(5, 15) \)[/tex] in a 5:3 ratio, follow these steps:

1. Identify the given values:
- [tex]\( a = 5 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( y_1 = -1 \)[/tex] (the [tex]\( y \)[/tex]-coordinate of point [tex]\( X \)[/tex])
- [tex]\( y_2 = 15 \)[/tex] (the [tex]\( y \)[/tex]-coordinate of point [tex]\( Y \)[/tex])

2. Use the formula for the [tex]\( y \)[/tex]-coordinate of the point dividing the line segment in the given ratio:
[tex]\[ y = \left(\frac{a}{a + b}\right)(y_2 - y_1) + y_1 \][/tex]

3. Substitute the given values into the formula:
[tex]\[ y = \left(\frac{5}{5 + 3}\right)(15 - (-1)) + (-1) \][/tex]

4. Simplify inside the parentheses:
[tex]\[ y = \left(\frac{5}{8}\right)(15 + 1) + (-1) \][/tex]
[tex]\[ y = \left(\frac{5}{8}\right)(16) + (-1) \][/tex]

5. Calculate the fraction multiplication:
[tex]\[ y = \left(\frac{5 \times 16}{8}\right) + (-1) \][/tex]
[tex]\[ y = 10 + (-1) \][/tex]

6. Finalize the calculation:
[tex]\[ y = 9 \][/tex]

Therefore, the [tex]\( y \)[/tex]-coordinate of the point that divides the line segment [tex]\(\overline{XY} \)[/tex] into a [tex]\( 5:3 \)[/tex] ratio is [tex]\( \boxed{9} \)[/tex].