Answer :
To balance the chemical equation [tex]\( Fe + O_2 \rightarrow Fe_2O_3 \)[/tex], we need to ensure that the number of atoms of each element on the reactant side is equal to the number on the product side.
Let’s analyze each proposed answer:
A. [tex]\(4 Fe + 3 O_2 \rightarrow 2 Fe_2O_3\)[/tex]
- Reactants:
- Fe: 4 atoms
- [tex]\(O_2\)[/tex]: [tex]\(3 \times 2 = 6\)[/tex] atoms of O
- Products:
- [tex]\(Fe_2O_3\)[/tex]: [tex]\(2 \times 2 = 4\)[/tex] atoms of Fe and [tex]\(2 \times 3 = 6\)[/tex] atoms of O
B. [tex]\(3 Fe + 4 O_2 \rightarrow 2 Fe_2O_3\)[/tex]
- Reactants:
- Fe: 3 atoms
- [tex]\(O_2\)[/tex]: [tex]\(4 \times 2 = 8\)[/tex] atoms of O
- Products:
- [tex]\(Fe_2O_3\)[/tex]: [tex]\(2 \times 2 = 4\)[/tex] atoms of Fe and [tex]\(2 \times 3 = 6\)[/tex] atoms of O
The balance check:
- Fe: Reactants = 3, Products = 4 (unbalanced)
- O: Reactants = 8, Products = 6 (unbalanced)
C. [tex]\(2 Fe + 4 O_2 \rightarrow 3 Fe_2O_3\)[/tex]
- Reactants:
- Fe: 2 atoms
- [tex]\(O_2\)[/tex]: [tex]\(4 \times 2 = 8\)[/tex] atoms of O
- Products:
- [tex]\(Fe_2O_3\)[/tex]: [tex]\(3 \times 2 = 6\)[/tex] atoms of Fe and [tex]\(3 \times 3 = 9\)[/tex] atoms of O
The balance check:
- Fe: Reactants = 2, Products = 6 (unbalanced)
- O: Reactants = 8, Products = 9 (unbalanced)
D. [tex]\(3 Fe + 3 O_2 \rightarrow 4 Fe_2O_3\)[/tex]
- Reactants:
- Fe: 3 atoms
- [tex]\(O_2\)[/tex]: [tex]\(3 \times 2 = 6\)[/tex] atoms of O
- Products:
- [tex]\(Fe_2O_3\)[/tex]: [tex]\(4 \times 2 = 8\)[/tex] atoms of Fe and [tex]\(4 \times 3 = 12\)[/tex] atoms of O
The balance check:
- Fe: Reactants = 3, Products = 8 (unbalanced)
- O: Reactants = 6, Products = 12 (unbalanced)
E. [tex]\(4 Fe + 4 O_2 \rightarrow 3 Fe_2O_3\)[/tex]
- Reactants:
- Fe: 4 atoms
- [tex]\(O_2\)[/tex]: [tex]\(4 \times 2 = 8\)[/tex] atoms of O
- Products:
- [tex]\(Fe_2O_3\)[/tex]: [tex]\(3 \times 2 = 6\)[/tex] atoms of Fe and [tex]\(3 \times 3 = 9\)[/tex] atoms of O
The balance check:
- Fe: Reactants = 4, Products = 6 (unbalanced)
- O: Reactants = 8, Products = 9 (unbalanced)
Based on these calculations, only Option A is balanced correctly:
A. [tex]\(4 Fe + 3 O_2 \rightarrow 2 Fe_2O_3\)[/tex]
Therefore, the correct balanced equation for the reaction is:
[tex]\[ \boxed{4 Fe + 3 O_2 \rightarrow 2 Fe_2O_3} \][/tex]
Let’s analyze each proposed answer:
A. [tex]\(4 Fe + 3 O_2 \rightarrow 2 Fe_2O_3\)[/tex]
- Reactants:
- Fe: 4 atoms
- [tex]\(O_2\)[/tex]: [tex]\(3 \times 2 = 6\)[/tex] atoms of O
- Products:
- [tex]\(Fe_2O_3\)[/tex]: [tex]\(2 \times 2 = 4\)[/tex] atoms of Fe and [tex]\(2 \times 3 = 6\)[/tex] atoms of O
B. [tex]\(3 Fe + 4 O_2 \rightarrow 2 Fe_2O_3\)[/tex]
- Reactants:
- Fe: 3 atoms
- [tex]\(O_2\)[/tex]: [tex]\(4 \times 2 = 8\)[/tex] atoms of O
- Products:
- [tex]\(Fe_2O_3\)[/tex]: [tex]\(2 \times 2 = 4\)[/tex] atoms of Fe and [tex]\(2 \times 3 = 6\)[/tex] atoms of O
The balance check:
- Fe: Reactants = 3, Products = 4 (unbalanced)
- O: Reactants = 8, Products = 6 (unbalanced)
C. [tex]\(2 Fe + 4 O_2 \rightarrow 3 Fe_2O_3\)[/tex]
- Reactants:
- Fe: 2 atoms
- [tex]\(O_2\)[/tex]: [tex]\(4 \times 2 = 8\)[/tex] atoms of O
- Products:
- [tex]\(Fe_2O_3\)[/tex]: [tex]\(3 \times 2 = 6\)[/tex] atoms of Fe and [tex]\(3 \times 3 = 9\)[/tex] atoms of O
The balance check:
- Fe: Reactants = 2, Products = 6 (unbalanced)
- O: Reactants = 8, Products = 9 (unbalanced)
D. [tex]\(3 Fe + 3 O_2 \rightarrow 4 Fe_2O_3\)[/tex]
- Reactants:
- Fe: 3 atoms
- [tex]\(O_2\)[/tex]: [tex]\(3 \times 2 = 6\)[/tex] atoms of O
- Products:
- [tex]\(Fe_2O_3\)[/tex]: [tex]\(4 \times 2 = 8\)[/tex] atoms of Fe and [tex]\(4 \times 3 = 12\)[/tex] atoms of O
The balance check:
- Fe: Reactants = 3, Products = 8 (unbalanced)
- O: Reactants = 6, Products = 12 (unbalanced)
E. [tex]\(4 Fe + 4 O_2 \rightarrow 3 Fe_2O_3\)[/tex]
- Reactants:
- Fe: 4 atoms
- [tex]\(O_2\)[/tex]: [tex]\(4 \times 2 = 8\)[/tex] atoms of O
- Products:
- [tex]\(Fe_2O_3\)[/tex]: [tex]\(3 \times 2 = 6\)[/tex] atoms of Fe and [tex]\(3 \times 3 = 9\)[/tex] atoms of O
The balance check:
- Fe: Reactants = 4, Products = 6 (unbalanced)
- O: Reactants = 8, Products = 9 (unbalanced)
Based on these calculations, only Option A is balanced correctly:
A. [tex]\(4 Fe + 3 O_2 \rightarrow 2 Fe_2O_3\)[/tex]
Therefore, the correct balanced equation for the reaction is:
[tex]\[ \boxed{4 Fe + 3 O_2 \rightarrow 2 Fe_2O_3} \][/tex]