Simplify the following expression:

[tex]$\frac{\left(\frac{6}{4}\right)^{-2} \cdot \frac{6}{4} - 4 \cdot \frac{6}{4}}{\left(\frac{6}{4}\right)^{-2} \cdot \frac{6}{4} - 8 \left(\frac{6}{4}\right)^{-2}}$[/tex]



Answer :

Sure, let's break down the given expression step-by-step to arrive at the solution.

The given expression is:
[tex]\[ \frac{\frac{6}{4}^{-2} \cdot \frac{6}{4} - 4 \cdot \frac{6}{4}}{\frac{6}{4}^{-2} \cdot \frac{6}{4} - 8 \cdot \left( -\frac{6}{4} \right)^2} \][/tex]

First, let’s define the fraction [tex]$\frac{6}{4}$[/tex]:
[tex]\[ \frac{6}{4} = 1.5 \][/tex]

Now calculate each component separately:

1. Calculate [tex]\(\left( \frac{6}{4} \right)^{-2}\)[/tex]:
[tex]\[ \left( \frac{6}{4} \right)^{-2} = \left( 1.5 \right)^{-2} = \frac{1}{(1.5)^2} = \frac{1}{2.25} = 0.4444\ldots \][/tex]

2. Calculate [tex]\(\frac{6}{4}^{-2} \cdot \frac{6}{4}\)[/tex]:
[tex]\[ 0.4444\ldots \times 1.5 = 0.6667\ldots \][/tex]
Here we round it to [tex]\(0.6667\)[/tex].

3. Calculate [tex]\(4 \cdot \frac{6}{4}\)[/tex]:
[tex]\[ 4 \times 1.5 = 6.0 \][/tex]

4. Calculate the numerator [tex]\(\frac{6}{4}^{-2} \cdot \frac{6}{4} - 4 \cdot \frac{6}{4}\)[/tex]:
[tex]\[ 0.6667 - 6.0 = -5.3333 \][/tex]

5. Calculate [tex]\(\left( -\frac{6}{4} \right)^{2}\)[/tex]:
[tex]\[ \left( -1.5 \right)^{2} = 2.25 \][/tex]

6. Calculate [tex]\(8 \cdot \left( -\frac{6}{4} \right)^2\)[/tex]:
[tex]\[ 8 \times 2.25 = 18.0 \][/tex]

7. Combine terms for the denominator [tex]\(\frac{6}{4}^{-2} \cdot \frac{6}{4} - 8 \cdot \left( -\frac{6}{4} \right)^2\)[/tex]:
[tex]\[ 0.6667 - 18.0 = -17.3333 \][/tex]

Finally, calculate the entire expression:
[tex]\[ \frac{-5.3333}{-17.3333} = 0.3077 \][/tex]

Thus, the final result of the expression is:
[tex]\[ \frac{\frac{6}{4}^{-2} \cdot \frac{6}{4} - 4 \cdot \frac{6}{4}}{\frac{6}{4}^{-2} \cdot \frac{6}{4} - 8 \cdot \left( -\frac{6}{4} \right)^2} = 0.3077 \][/tex]