Choose the equation that represents the solutions of [tex]\(0 = 0.25x^2 - 8x\)[/tex].

A. [tex]\(x = \frac{0.25 \pm \sqrt{(0.25)^2 - (4)(1)(-8)}}{2(1)}\)[/tex]
B. [tex]\(x = \frac{-0.25 \pm \sqrt{(0.25)^2 - (4)(1)(-8)}}{2(1)}\)[/tex]
C. [tex]\(x = \frac{8 \pm \sqrt{(-8)^2 - (4)(0.25)(0)}}{2(0.25)}\)[/tex]
D. [tex]\(x = \frac{-8 \pm \sqrt{(-8)^2 - (4)(0.25)(0)}}{2(0.25)}\)[/tex]



Answer :

Let's start by analyzing the given quadratic equation: [tex]\(0 = 0.25x^2 - 8x\)[/tex]. This equation is in the standard quadratic form [tex]\(ax^2 + bx + c = 0\)[/tex].

Here, we have:
- [tex]\(a = 0.25\)[/tex]
- [tex]\(b = -8\)[/tex]
- [tex]\(c = 0\)[/tex]

We use the quadratic formula to find the roots of the equation:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Substituting in the values for [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:

1. Calculate the discriminant [tex]\(b^2 - 4ac\)[/tex]:
[tex]\[ b^2 - 4ac = (-8)^2 - 4(0.25)(0) = 64 - 0 = 64 \][/tex]

2. Substitute [tex]\(b\)[/tex], the discriminant, [tex]\(a\)[/tex], and [tex]\(c\)[/tex] into the quadratic formula:
[tex]\[ x = \frac{-(-8) \pm \sqrt{64}}{2(0.25)} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{64}}{0.5} \][/tex]

Hence, the correct equation that represents the solutions of [tex]\(0 = 0.25x^2 - 8x\)[/tex] is:

[tex]\[ x = \frac{8 \pm \sqrt{(-8)^2 - (4)(0.25)(0)}}{2(0.25)} \][/tex]

Thus, the correct choice is:
[tex]\[ x = \frac{8 \pm \sqrt{(-8)^2 - (4)(0.25)(0)}}{2(0.25)} \][/tex]