Which represents the inverse of the function [tex]\( f(x) = 4x \)[/tex]?

A. [tex]\( h(x) = x + 4 \)[/tex]
B. [tex]\( h(x) = x - 4 \)[/tex]
C. [tex]\( h(x) = \frac{3}{4} x \)[/tex]
D. [tex]\( h(x) = \frac{1}{4} x \)[/tex]



Answer :

To find the inverse of the function [tex]\( f(x) = 4x \)[/tex], we need to follow these steps:

1. Express the function in terms of [tex]\( y \)[/tex]:
[tex]\[ y = 4x \][/tex]

2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
To find the inverse, we swap the roles of [tex]\( x \)[/tex] and [tex]\( y \)[/tex], giving us:
[tex]\[ x = 4y \][/tex]

3. Solve for [tex]\( y \)[/tex]:
To isolate [tex]\( y \)[/tex], we divide both sides of the equation by 4:
[tex]\[ y = \frac{x}{4} \][/tex]

4. Rewrite the inverse function:
Now, we have [tex]\( y = \frac{x}{4} \)[/tex] which indicates that the inverse function is:
[tex]\[ h(x) = \frac{x}{4} \][/tex]

This can be rewritten as:
[tex]\[ h(x) = \frac{1}{4} x \][/tex]

Therefore, the correct choice that represents the inverse of the function [tex]\( f(x) = 4x \)[/tex] is:
[tex]\[ h(x) = \frac{1}{4} x \][/tex]