To determine which choice is equivalent to the product [tex]\(\sqrt{2} \cdot \sqrt{10} \cdot \sqrt{5}\)[/tex], let's go through a step-by-step simplification process.
1. Write the product of the square roots as a single square root:
[tex]\[
\sqrt{2} \cdot \sqrt{10} \cdot \sqrt{5} = \sqrt{2 \cdot 10 \cdot 5}
\][/tex]
2. Simplify the expression inside the square root:
[tex]\[
2 \cdot 10 \cdot 5 = 100
\][/tex]
3. Take the square root of the resulting product:
[tex]\[
\sqrt{100} = 10
\][/tex]
Thus, the product [tex]\(\sqrt{2} \cdot \sqrt{10} \cdot \sqrt{5}\)[/tex] simplifies to [tex]\(10\)[/tex].
So the correct choice is:
B. 10