If [tex]\( f(x) = 5x + 40 \)[/tex], what is [tex]\( f(x) \)[/tex] when [tex]\( x = -5 \)[/tex]?

A. [tex]\(-9\)[/tex]
B. [tex]\(-8\)[/tex]
C. 7
D. 15



Answer :

To find the value of [tex]\( f(x) \)[/tex] when [tex]\( x = -5 \)[/tex] for the function [tex]\( f(x) = 5x + 40 \)[/tex], follow these steps:

1. Substitute [tex]\( x = -5 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(-5) = 5(-5) + 40 \][/tex]

2. Calculate the product [tex]\( 5(-5) \)[/tex]:
[tex]\[ 5(-5) = -25 \][/tex]

3. Add the result to 40:
[tex]\[ -25 + 40 = 15 \][/tex]

So, [tex]\( f(-5) = 15 \)[/tex].

Therefore, the value of [tex]\( f(x) \)[/tex] when [tex]\( x = -5 \)[/tex] is [tex]\( 15 \)[/tex].

The correct answer is:
15