The table represents the function [tex]\( f(x) \)[/tex].

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $f(x)$ \\
\hline
-3 & -9 \\
\hline
-2 & -6 \\
\hline
-1 & -3 \\
\hline
0 & 0 \\
\hline
1 & 3 \\
\hline
2 & 6 \\
\hline
3 & 9 \\
\hline
\end{tabular}
\][/tex]

What is [tex]\( f(3) \)[/tex]?

A. -9
B. -1
C. 1
D. 9



Answer :

To find the value of [tex]\( f(3) \)[/tex] from the given table, we need to look up the value of the function [tex]\( f \)[/tex] when [tex]\( x = 3 \)[/tex].

The table provides the following pairs of [tex]\( (x, f(x)) \)[/tex]:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -3 & -9 \\ \hline -2 & -6 \\ \hline -1 & -3 \\ \hline 0 & 0 \\ \hline 1 & 3 \\ \hline 2 & 6 \\ \hline 3 & 9 \\ \hline \end{array} \][/tex]

We need to find the value associated with [tex]\( x = 3 \)[/tex]. According to the table:

For [tex]\( x = 3 \)[/tex], the corresponding [tex]\( f(x) \)[/tex] value is 9.

Thus, [tex]\( f(3) = 9 \)[/tex].

Therefore, the correct answer is [tex]\( 9 \)[/tex].