Select the correct answer.

If the endpoints of [tex]\(\overline{AB}\)[/tex] have the coordinates [tex]\(A(9,8)\)[/tex] and [tex]\(B(-1,-2)\)[/tex], what is the midpoint of [tex]\(\overline{AB}\)[/tex]?

A. [tex]\((5,3)\)[/tex]
B. [tex]\((4,5)\)[/tex]
C. [tex]\((5,5)\)[/tex]
D. [tex]\((4,3)\)[/tex]



Answer :

To determine the midpoint of the line segment [tex]\(\overline{AB}\)[/tex] with given endpoints [tex]\(A(9,8)\)[/tex] and [tex]\(B(-1,-2)\)[/tex], we can use the midpoint formula. The midpoint formula is given by:

[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Here, [tex]\((x_1, y_1)\)[/tex] are the coordinates of point [tex]\(A\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are the coordinates of point [tex]\(B\)[/tex].

Let's substitute the given coordinates into the formula. For point [tex]\(A\)[/tex], [tex]\(x_1 = 9\)[/tex] and [tex]\(y_1 = 8\)[/tex]. For point [tex]\(B\)[/tex], [tex]\(x_2 = -1\)[/tex] and [tex]\(y_2 = -2\)[/tex].

Now calculate the x-coordinate of the midpoint:

[tex]\[ \frac{x_1 + x_2}{2} = \frac{9 + (-1)}{2} = \frac{9 - 1}{2} = \frac{8}{2} = 4 \][/tex]

Next, calculate the y-coordinate of the midpoint:

[tex]\[ \frac{y_1 + y_2}{2} = \frac{8 + (-2)}{2} = \frac{8 - 2}{2} = \frac{6}{2} = 3 \][/tex]

Thus, the midpoint of [tex]\(\overline{AB}\)[/tex] is:

[tex]\[ (4, 3) \][/tex]

Therefore, the correct answer is:

D. [tex]\((4, 3)\)[/tex]