A power company calculates a person's monthly bill from the number of kilowatt-hours (kWh) used.

The function is given by:
[tex]\[
b(x)=\begin{cases}
0.15x, & \text{if } x \leq 360 \\
0.10(x-360) + 54, & \text{if } x \ \textgreater \ 360
\end{cases}
\][/tex]

How much is the bill for a person who uses 560 kWh in a month?



Answer :

To determine the bill for a person who uses [tex]\(560\, \text{kWh}\)[/tex] in a month using the piecewise function [tex]\( b(x) \)[/tex], we'll follow these steps:

1. Identify which part of the piecewise function we need to use. The given function is:
[tex]\[ b(x)=\begin{cases} 0.15x & \text{if } x \leq 360 \\ 0.10(x-360) + 54 & \text{if } x > 360 \end{cases} \][/tex]
Here, [tex]\(x = 560\)[/tex], which is greater than [tex]\(360\)[/tex]. Therefore, we use the second part of the piecewise function, [tex]\( b(x) = 0.10(x-360) + 54 \)[/tex].

2. Substitute [tex]\( x = 560 \)[/tex] into the second part of the function:
[tex]\[ b(560) = 0.10(560 - 360) + 54 \][/tex]

3. Calculate the expression inside the parentheses:
[tex]\[ 560 - 360 = 200 \][/tex]

4. Multiply the result by [tex]\(0.10\)[/tex]:
[tex]\[ 0.10 \times 200 = 20 \][/tex]

5. Add the constant term [tex]\(54\)[/tex] to the result:
[tex]\[ 20 + 54 = 74 \][/tex]

Therefore, the bill for a person who uses [tex]\(560\, \text{kWh}\)[/tex] in a month is:
[tex]\[ \boxed{74} \][/tex]