Complete the unit conversion setup using dimensional analysis.

The molecular weight of table salt, NaCl, is 58.5 g/mol. A tablespoon of salt weighs 6.37 grams.

A × (B / C) = moles NaCl

A: \_\_\_\_\_
B: \_\_\_\_\_
C: \_\_\_\_\_



Answer :

Sure, let's go through the detailed steps to complete the unit conversion setup using dimensional analysis for determining the moles of NaCl.

### Initial Information:
- Molecular weight of NaCl: [tex]\( 58.5 \, \text{g/mol} \)[/tex]
- Weight of the salt: [tex]\( 6.37 \, \text{g} \)[/tex]

We need to determine how many moles of NaCl are in 6.37 grams of salt.

### Calculation using Dimensional Analysis:
To find the number of moles, we will use the formula:

[tex]\[ \text{Moles of NaCl} = \frac{\text{Weight of salt}}{\text{Molecular weight of NaCl}} \][/tex]

### Filling in the Dimensional Analysis Setup:

1. A – The given weight of salt in grams.
2. B – The unit of weight we're given, which is grams.
3. C – The molecular weight of NaCl in grams per mole.

So, substituting the values here:

[tex]\[ A = 6.37 \, \text{g} \][/tex]
[tex]\[ B = 1 \, \text{g} \][/tex]
[tex]\[ C = 58.5 \, \text{g/mol} \][/tex]

### Verification of the Unit Conversion Setup:
To use dimensional analysis correctly:

[tex]\[ \text{Moles NaCl} = A \times \frac{B}{C} \][/tex]

Substituting these values:

[tex]\[ \text{Moles NaCl} = 6.37 \, \text{g} \times \frac{1 \, \text{g}}{58.5 \, \text{g/mol}} \][/tex]

This indeed simplifies to calculating the moles of NaCl:

[tex]\[ \text{Moles NaCl} = \frac{6.37}{58.5} = 0.1088888888888889 \][/tex]

### Conclusion:

Therefore,
[tex]\[ A = 6.37 \, \text{g} \][/tex]
[tex]\[ B = 1 \, \text{g} \][/tex]
[tex]\[ C = 58.5 \, \text{g/mol} \][/tex]
And the number of moles of NaCl is approximately 0.1089 moles.

So, completing the setup:

[tex]\[ A \times \frac{B}{C} = \text{Moles of NaCl} \][/tex]

where:

[tex]\[ A = 6.37 \][/tex]
[tex]\[ B = 1 \, \text{g} \][/tex]
[tex]\[ C = 58.5 \, \text{g/mol} \][/tex]