Which expression is equivalent to [tex]\(2x^2 - 2x + 7\)[/tex]?

A. [tex]\((4x + 12) + (2x^2 - 6x + 5)\)[/tex]

B. [tex]\((x^2 - 5x + 13) + (x^2 + 3x - 6)\)[/tex]

C. [tex]\((4x^2 - 6x + 11) + (2x^2 - 4x + 4)\)[/tex]

D. [tex]\((5x^2 - 8x + 120) + (-3x^2 + 10x - 13)\)[/tex]



Answer :

Let's identify which expression is equivalent to [tex]\( 2x^2 - 2x + 7 \)[/tex] by simplifying each given expression step-by-step.

First Expression:
[tex]\[ (4x + 12) + (2x^2 - 6x + 5) \][/tex]
Combine like terms:
[tex]\[ = 2x^2 + 4x - 6x + 12 + 5 \][/tex]
[tex]\[ = 2x^2 - 2x + 17 \][/tex]
This simplifies to [tex]\( 2x^2 - 2x + 17 \)[/tex], which is not equivalent to [tex]\( 2x^2 - 2x + 7 \)[/tex].

Second Expression:
[tex]\[ (x^2 - 5x + 13) + (x^2 + 3x - 6) \][/tex]
Combine like terms:
[tex]\[ = x^2 + x^2 - 5x + 3x + 13 - 6 \][/tex]
[tex]\[ = 2x^2 - 2x + 7 \][/tex]
This simplifies to [tex]\( 2x^2 - 2x + 7 \)[/tex], which is exactly what we are looking for.

Third Expression:
[tex]\[ (4x^2 - 6x + 11) + (2x^2 - 4x + 4) \][/tex]
Combine like terms:
[tex]\[ = 4x^2 + 2x^2 - 6x - 4x + 11 + 4 \][/tex]
[tex]\[ = 6x^2 - 10x + 15 \][/tex]
This simplifies to [tex]\( 6x^2 - 10x + 15 \)[/tex], which is not equivalent to [tex]\( 2x^2 - 2x + 7 \)[/tex].

Fourth Expression:
[tex]\[ (5x^2 - 8x + 120) + (-3x^2 + 10x - 13) \][/tex]
Combine like terms:
[tex]\[ = 5x^2 - 3x^2 - 8x + 10x + 120 - 13 \][/tex]
[tex]\[ = 2x^2 + 2x + 107 \][/tex]
This simplifies to [tex]\( 2x^2 + 2x + 107 \)[/tex], which is not equivalent to [tex]\( 2x^2 - 2x + 7 \)[/tex].

Therefore, the expression that is equivalent to [tex]\( 2x^2 - 2x + 7 \)[/tex] is:
[tex]\[ \left( x^2 - 5x + 13 \right) + \left( x^2 + 3x - 6\right) \][/tex]

So, the correct answer is the second expression.