To produce the graph of the function [tex]\( y = 0.5 \cot(0.5x) \)[/tex], what transformations should be applied to the graph of the parent function [tex]\( y = \cot(x) \)[/tex]?

A. A horizontal compression to produce a period of [tex]\( \frac{\pi}{2} \)[/tex] and a vertical compression
B. A horizontal compression to produce a period of [tex]\( \frac{\pi}{2} \)[/tex] and a vertical stretch
C. A horizontal stretch to produce a period of [tex]\( 2\pi \)[/tex] and a vertical compression
D. A horizontal stretch to produce a period of [tex]\( 2\pi \)[/tex] and a vertical stretch



Answer :

To graph the function [tex]\( y = 0.5 \cot(0.5x) \)[/tex], let’s examine the transformations applied to the parent function [tex]\( y = \cot(x) \)[/tex].

1. Horizontal Transformation:

The parent function is [tex]\( y = \cot(x) \)[/tex], which has a period of [tex]\( \pi \)[/tex]. The function given for transformation is [tex]\( y = 0.5 \cot(0.5x) \)[/tex].

- The term [tex]\( 0.5x \)[/tex] inside the cotangent function affects the period. The period of [tex]\( \cot(bx) \)[/tex] is [tex]\( \pi / |b| \)[/tex].
- Here, [tex]\( b = 0.5 \)[/tex]. Therefore, the new period is [tex]\( \pi / 0.5 = 2\pi \)[/tex].
- This results in a horizontal stretch by a factor of 2, changing the period from [tex]\( \pi \)[/tex] to [tex]\( 2\pi \)[/tex].

2. Vertical Transformation:

- The coefficient [tex]\( 0.5 \)[/tex] in front of the cotangent function leads to a vertical transformation.
- This coefficient compresses the graph vertically by a factor of 0.5.

In summary, to graph [tex]\( y = 0.5 \cot(0.5x) \)[/tex], you would:

- Apply a horizontal stretch to produce a period of [tex]\( 2\pi \)[/tex].
- Apply a vertical compression by a factor of 0.5.

Thus, the appropriate choice is:
a horizontal stretch to produce a period of [tex]\( 2\pi \)[/tex] and a vertical compression

Hence, the correct answer is:
a horizontal stretch to produce a period of [tex]\( 2\pi \)[/tex] and a vertical compression.