Use the table to find the given derivative.

[tex]\[
\left.\frac{d}{dx}[x f(x)]\right|_{x=4}
\][/tex]

[tex]\[
\begin{array}{|c|c|c|c|c|c|}
\hline
x & 1 & 2 & 3 & 4 & 5 \\
\hline
f(x) & 5 & 1 & 4 & 3 & 2 \\
\hline
f^{\prime}(x) & 1 & 4 & 2 & 5 & 3 \\
\hline
\end{array}
\][/tex]

[tex]\[
\left.\frac{d}{dx}[x f(x)]\right|_{x=4} = \square \quad (\text{Simplify your answer.})
\][/tex]



Answer :

To find the given derivative [tex]\(\left.\frac{d}{d x}[x f(x)]\right|_{x=4}\)[/tex] using the information from the table, we will use the product rule for differentiation.

The product rule states that if you have two functions [tex]\(u(x)\)[/tex] and [tex]\(v(x)\)[/tex], the derivative of their product [tex]\(u(x) v(x)\)[/tex] is given by:
[tex]\[ \frac{d}{dx}[u(x) v(x)] = u(x) \cdot \frac{d}{dx}[v(x)] + v(x) \cdot \frac{d}{dx}[u(x)] \][/tex]

In our case, [tex]\(u(x) = x\)[/tex] and [tex]\(v(x) = f(x)\)[/tex]. Applying the product rule:
[tex]\[ \frac{d}{dx}[x f(x)] = x \cdot \frac{d}{dx}[f(x)] + f(x) \cdot \frac{d}{dx}[x] \][/tex]

We know that [tex]\(\frac{d}{dx}[x] = 1\)[/tex], so this simplifies to:
[tex]\[ \frac{d}{dx}[x f(x)] = x \cdot f'(x) + f(x) \][/tex]

Now we need to evaluate this expression at [tex]\(x = 4\)[/tex]. From the table:
[tex]\[ f(4) = 3 \quad \text{and} \quad f'(4) = 5 \][/tex]

Substituting [tex]\(x = 4\)[/tex], [tex]\(f(4)\)[/tex], and [tex]\(f'(4)\)[/tex] into the derivative expression, we get:
[tex]\[ \left. \frac{d}{dx}[x f(x)] \right|_{x=4} = 4 \cdot 5 + 3 \][/tex]

Simplifying this:
[tex]\[ 4 \cdot 5 = 20 \][/tex]
[tex]\[ 20 + 3 = 23 \][/tex]

So, the value of the derivative at [tex]\(x = 4\)[/tex] is:
[tex]\[ \left.\frac{d}{d x}[x f(x)]\right|_{x=4}= 23 \][/tex]