Answer :
To determine the measures of the angles in the right triangle with sides [tex]\( AC = 7 \)[/tex] inches, [tex]\( BC = 24 \)[/tex] inches, and [tex]\( AB = 25 \)[/tex] inches, we need to use trigonometric functions and properties of triangles. Given that [tex]\( AB \)[/tex] is the hypotenuse, we can confirm that triangle [tex]\( ABC \)[/tex] is a right triangle because it satisfies the Pythagorean theorem:
[tex]\[ AC^2 + BC^2 = AB^2 \][/tex]
Calculating, we have:
[tex]\[ 7^2 + 24^2 = 25^2 \][/tex]
[tex]\[ 49 + 576 = 625 \][/tex]
[tex]\[ 625 = 625 \][/tex]
This confirms that [tex]\( \angle C \)[/tex] is [tex]\( 90^\circ \)[/tex]. Now, let's determine the other two angles using trigonometric ratios.
### Angle [tex]\( \angle A \)[/tex]
We use the sine function to find [tex]\( \angle A \)[/tex]:
[tex]\[ \sin(A) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{AC}{AB} = \frac{7}{25} \][/tex]
We find the angle measure:
[tex]\[ \angle A = \sin^{-1}\left(\frac{7}{25}\right) \approx 16.26^\circ \][/tex]
### Angle [tex]\( \angle B \)[/tex]
We use the sine function to find [tex]\( \angle B \)[/tex]:
[tex]\[ \sin(B) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{BC}{AB} = \frac{24}{25} \][/tex]
We find the angle measure:
[tex]\[ \angle B = \sin^{-1}\left(\frac{24}{25}\right) \approx 73.74^\circ \][/tex]
### Verification
Since the angle sum property of a triangle must hold:
[tex]\[ \angle A + \angle B + \angle C = 180^\circ \][/tex]
[tex]\[ 16.26^\circ + 73.74^\circ + 90^\circ = 180^\circ \][/tex]
Both calculations for [tex]\( \angle A \)[/tex] and [tex]\( \angle B \)[/tex] add up correctly with [tex]\( \angle C \)[/tex].
Thus, we have the following measures for the angles in the triangle:
[tex]\[ \angle A \approx 16.3^\circ, \quad \angle B \approx 73.7^\circ, \quad \angle C = 90^\circ \][/tex]
Therefore, the closest matching option for the angles is:
[tex]\[ \boxed{m \angle A \approx 73.7^\circ, m \angle B \approx 16.3^\circ, m \angle C \approx 90^\circ} \][/tex]
[tex]\[ AC^2 + BC^2 = AB^2 \][/tex]
Calculating, we have:
[tex]\[ 7^2 + 24^2 = 25^2 \][/tex]
[tex]\[ 49 + 576 = 625 \][/tex]
[tex]\[ 625 = 625 \][/tex]
This confirms that [tex]\( \angle C \)[/tex] is [tex]\( 90^\circ \)[/tex]. Now, let's determine the other two angles using trigonometric ratios.
### Angle [tex]\( \angle A \)[/tex]
We use the sine function to find [tex]\( \angle A \)[/tex]:
[tex]\[ \sin(A) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{AC}{AB} = \frac{7}{25} \][/tex]
We find the angle measure:
[tex]\[ \angle A = \sin^{-1}\left(\frac{7}{25}\right) \approx 16.26^\circ \][/tex]
### Angle [tex]\( \angle B \)[/tex]
We use the sine function to find [tex]\( \angle B \)[/tex]:
[tex]\[ \sin(B) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{BC}{AB} = \frac{24}{25} \][/tex]
We find the angle measure:
[tex]\[ \angle B = \sin^{-1}\left(\frac{24}{25}\right) \approx 73.74^\circ \][/tex]
### Verification
Since the angle sum property of a triangle must hold:
[tex]\[ \angle A + \angle B + \angle C = 180^\circ \][/tex]
[tex]\[ 16.26^\circ + 73.74^\circ + 90^\circ = 180^\circ \][/tex]
Both calculations for [tex]\( \angle A \)[/tex] and [tex]\( \angle B \)[/tex] add up correctly with [tex]\( \angle C \)[/tex].
Thus, we have the following measures for the angles in the triangle:
[tex]\[ \angle A \approx 16.3^\circ, \quad \angle B \approx 73.7^\circ, \quad \angle C = 90^\circ \][/tex]
Therefore, the closest matching option for the angles is:
[tex]\[ \boxed{m \angle A \approx 73.7^\circ, m \angle B \approx 16.3^\circ, m \angle C \approx 90^\circ} \][/tex]