Find the period and amplitude of the function:

[tex]\[ y = 4 \sin \left(\frac{2}{3} x\right) \][/tex]

Give the exact values, not decimal approximations.

Period: [tex]\(\square\)[/tex]

Amplitude: [tex]\(\square\)[/tex]



Answer :

Sure! Let's find the amplitude and period of the function [tex]\( y = 4 \sin \left(\frac{2}{3} x \right) \)[/tex].

Firstly, to determine the amplitude, we look at the coefficient in front of the sine function. The given function is of the form [tex]\( y = A \sin(Bx) \)[/tex].

In this case, the coefficient [tex]\( A \)[/tex] is 4. Therefore, the amplitude is:
[tex]\[ \text{Amplitude} = 4 \][/tex]

Next, to determine the period of the sine function, we use the formula for the period of [tex]\( y = \sin(Bx) \)[/tex], which is given by:
[tex]\[ \text{Period} = \frac{2\pi}{B} \][/tex]

Here, [tex]\( B \)[/tex] is the coefficient of [tex]\( x \)[/tex] inside the sine function. In our function, [tex]\( B = \frac{2}{3} \)[/tex].

Substituting [tex]\( B \)[/tex] into the period formula, we get:
[tex]\[ \text{Period} = \frac{2\pi}{\frac{2}{3}} = 2\pi \times \frac{3}{2} = 3\pi \][/tex]

Thus, the period of the function is:
[tex]\[ \text{Period} = 3\pi \][/tex]

So, we have the final solutions:
[tex]\[ \begin{aligned} \text{Amplitude} &= 4 \\ \text{Period} &= 3\pi \end{aligned} \][/tex]

Therefore, the exact values for the period and amplitude of the function [tex]\( y = 4 \sin \left( \frac{2}{3} x \right) \)[/tex] are:

Period: [tex]\( 3\pi \)[/tex]

Amplitude: [tex]\( 4 \)[/tex]