Select the correct answer.

If the factors of the quadratic function [tex]\( g \)[/tex] are [tex]\( (x-7) \)[/tex] and [tex]\( (x+3) \)[/tex], what are the zeros of function [tex]\( g \)[/tex]?

A. -7 and 3
B. -7 and -3
C. 3 and 7
D. -3 and 7



Answer :

To determine the zeros of the quadratic function [tex]\( g \)[/tex] given its factors [tex]\( (x - 7) \)[/tex] and [tex]\( (x + 3) \)[/tex], follow these steps:

1. Identify the factors: The function [tex]\( g(x) \)[/tex] is factored as [tex]\( (x - 7) \)[/tex] and [tex]\( (x + 3) \)[/tex]. This means the function can be written as:
[tex]\[ g(x) = (x - 7)(x + 3) \][/tex]

2. Set each factor equal to zero: The zeros of the function are the values of [tex]\( x \)[/tex] that make each factor equal to zero.

- For the factor [tex]\( (x - 7) \)[/tex], set it equal to zero:
[tex]\[ x - 7 = 0 \][/tex]
Solving for [tex]\( x \)[/tex], we get:
[tex]\[ x = 7 \][/tex]

- For the factor [tex]\( (x + 3) \)[/tex], set it equal to zero:
[tex]\[ x + 3 = 0 \][/tex]
Solving for [tex]\( x \)[/tex], we get:
[tex]\[ x = -3 \][/tex]

3. Combine the zeros: The zeros of the function [tex]\( g(x) \)[/tex] are the solutions to the above equations. Therefore, the zeros are:
[tex]\[ x = 7 \quad \text{and} \quad x = -3 \][/tex]

Thus, the correct answer is:
D. [tex]\(-3\)[/tex] and [tex]\(7\)[/tex]

Other Questions