Answer :

To rewrite the absolute value function [tex]\( f(x) = |x + 3| \)[/tex] as a piecewise function, we need to consider the definition of the absolute value function. The absolute value of a number is defined as follows:

[tex]\[ |a| = \begin{cases} a & \text{if } a \geq 0 \\ -a & \text{if } a < 0 \end{cases} \][/tex]

Applying this to our function [tex]\( f(x) = |x + 3| \)[/tex]:

1. Case 1: When the expression inside the absolute value is non-negative ([tex]\( x + 3 \geq 0 \)[/tex]), the function [tex]\( f(x) \)[/tex] simplifies to:
[tex]\[ f(x) = x + 3 \][/tex]
This happens when:
[tex]\[ x + 3 \geq 0 \implies x \geq -3 \][/tex]

2. Case 2: When the expression inside the absolute value is negative ([tex]\( x + 3 < 0 \)[/tex]), the function [tex]\( f(x) \)[/tex] becomes the negative of the expression:
[tex]\[ f(x) = -(x + 3) \][/tex]
This occurs when:
[tex]\[ x + 3 < 0 \implies x < -3 \][/tex]

Combining these cases, we can write the function [tex]\( f(x) = |x + 3| \)[/tex] as a piecewise function:

[tex]\[ f(x) = \begin{cases} x + 3 & \text{if } x \geq -3 \\ -(x + 3) & \text{if } x < -3 \end{cases} \][/tex]

Thus, the absolute value function [tex]\( f(x) = |x + 3| \)[/tex] is written as the piecewise function:

[tex]\[ f(x) = \begin{cases} x + 3 & \text{when } x \geq -3 \\ -(x + 3) & \text{when } x < -3 \end{cases} \][/tex]