To calculate the volume of a right circular cylinder, we can use the formula:
[tex]\[ \text{Volume} = \pi r^2 h \][/tex]
Where:
- [tex]\(\pi \approx 3\)[/tex] (as given in the problem for approximation purposes),
- [tex]\(r\)[/tex] is the radius of the cylinder,
- [tex]\(h\)[/tex] is the height of the cylinder.
Given:
- Radius [tex]\(r = 3\)[/tex] meters,
- Height [tex]\(h = 5\)[/tex] meters.
We substitute the given values into the formula:
[tex]\[ \text{Volume} = 3 \times (3)^2 \times 5 \][/tex]
First, calculate the square of the radius:
[tex]\[ (3)^2 = 3 \times 3 = 9 \][/tex]
Next, multiply this result by the constant [tex]\(\pi\)[/tex]:
[tex]\[ 3 \times 9 = 27 \][/tex]
Finally, multiply by the height:
[tex]\[ 27 \times 5 = 135 \][/tex]
Thus, the volume of the cylinder is:
[tex]\[ \text{Volume} = 135 \, \text{m}^3 \][/tex]
The correct answer from the given choices is:
D. [tex]\(135 \, \text{m}^3\)[/tex]