In an arithmetic sequence, [tex]\(a_{14} = -75\)[/tex] and [tex]\(a_{26} = -123\)[/tex]. Which recursive formula defines the sequence?

A. [tex]\(a_n = a_{n-1} - 4; \, a_1 = -23\)[/tex]
B. [tex]\(a_n = a_{n-1} - 4; \, a_1 = -19\)[/tex]
C. [tex]\(a_n = -4 a_{n-1} - 19; \, a_1 = -23\)[/tex]
D. [tex]\(a_n = -4 a_{n-1} - 19; \, a_1 = -19\)[/tex]



Answer :

Sure, let’s solve this step by step:

1. We are given that the sequence is arithmetic, which means the difference between consecutive terms is constant.

2. We are provided with:
- [tex]\( a_{14} = -75 \)[/tex]
- [tex]\( a_{26} = -123 \)[/tex]

3. To find the common difference [tex]\( d \)[/tex], we use the formula for the nth term of an arithmetic sequence:
[tex]\[ a_n = a_1 + (n-1)d \][/tex]

4. We need to find the value of [tex]\( d \)[/tex]. We know:
[tex]\[ a_{26} = a_{14} + 12d \][/tex]

5. Plugging the given values into this equation:
[tex]\[ -123 = -75 + 12d \][/tex]

6. Simplifying for [tex]\( d \)[/tex]:
[tex]\[ -123 + 75 = 12d \][/tex]
[tex]\[ -48 = 12d \][/tex]
[tex]\[ d = \frac{-48}{12} \][/tex]
[tex]\[ d = -4 \][/tex]

7. Now we need to find the first term [tex]\( a_1 \)[/tex]. Using the value of [tex]\( a_{14} \)[/tex]:
[tex]\[ a_{14} = a_1 + 13d \][/tex]
[tex]\[ -75 = a_1 + 13(-4) \][/tex]
[tex]\[ -75 = a_1 - 52 \][/tex]
[tex]\[ a_1 = -75 + 52 \][/tex]
[tex]\[ a_1 = -23 \][/tex]

8. Now we check which recursive formula matches:
- [tex]\( a_n = a_{n-1} - 4 \)[/tex] has [tex]\( d = -4 \)[/tex] and from our calculation, [tex]\( a_1 = -23 \)[/tex].

Therefore, the correct recursive formula is:
[tex]\[ a_n = a_{n-1} - 4, \quad a_1 = -23 \][/tex]

Thus, the answer is:

[tex]\[ \boxed{a_n = a_{n-1} - 4; \quad a_1 = -23} \][/tex]