Line [tex]\(AB\)[/tex] contains points [tex]\(A(-2,6)\)[/tex] and [tex]\(B(4,5)\)[/tex].

What is the slope of line [tex]\(AB\)[/tex]?

A. [tex]\(\frac{-1}{6}\)[/tex]
B. [tex]\(\frac{1}{6}\)[/tex]
C. [tex]\(6\)[/tex]



Answer :

To find the slope of the line passing through the points [tex]\( A(-2, 6) \)[/tex] and [tex]\( B(4, 5) \)[/tex], we can use the slope formula:

[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Here, [tex]\((x_1, y_1) = (-2, 6)\)[/tex] and [tex]\((x_2, y_2) = (4, 5)\)[/tex].

Now, substitute the given values into the slope formula:

[tex]\[ \text{slope} = \frac{5 - 6}{4 - (-2)} \][/tex]

First, calculate the difference in the y-coordinates:

[tex]\[ 5 - 6 = -1 \][/tex]

Now, calculate the difference in the x-coordinates:

[tex]\[ 4 - (-2) = 4 + 2 = 6 \][/tex]

Finally, divide the difference in the y-coordinates by the difference in the x-coordinates:

[tex]\[ \text{slope} = \frac{-1}{6} \][/tex]

Therefore, the slope of line [tex]\( AB \)[/tex] is [tex]\( \frac{-1}{6} \)[/tex].