A set of data items is normally distributed with a mean of 40 and a standard deviation of 9. Convert 22 to a z-score.

[tex]\( z_{22} = \square \)[/tex]

(Type an integer or a decimal.)



Answer :

To convert a value from a normally distributed data set to a [tex]$z$[/tex]-score, you can use the following formula:

[tex]\[ z = \frac{{x - \mu}}{{\sigma}} \][/tex]

where:
- [tex]\( x \)[/tex] is the value you want to convert
- [tex]\( \mu \)[/tex] is the mean of the data set
- [tex]\( \sigma \)[/tex] is the standard deviation of the data set

Given:
- Mean ([tex]\( \mu \)[/tex]) = 40
- Standard deviation ([tex]\( \sigma \)[/tex]) = 9
- Value to convert ([tex]\( x \)[/tex]) = 22

We can plug these values into the formula:

[tex]\[ z = \frac{{22 - 40}}{{9}} \][/tex]

First, calculate the numerator:

[tex]\[ 22 - 40 = -18 \][/tex]

Next, divide the result by the standard deviation:

[tex]\[ z = \frac{{-18}}{{9}} = -2.0 \][/tex]

So, the [tex]$z$[/tex]-score for the value 22 is:

[tex]\[ z_{22} = -2.0 \][/tex]