5. A researcher is using data for a sample of 10 observations to estimate the relationship between the number of employees required (y) and the number of departments (x) in an organization. Preliminary analysis of the sample data produces the following information:
[tex]\[
\sum x = 20, \quad \sum y = 40, \quad \sum x^2 = 100, \quad \sum y^2 = 120, \quad \sum xy = 180
\][/tex]

Use the above information to:
(a) Compute the correlation coefficient and interpret the result.
(b) Develop a linear regression equation for forecasting the number of employees based on the number of departments.
(c) Forecast the human resource requirement (number of employees) if the organization plans to expand its departments to 16 over the next five strategic planning periods.



Answer :

Sure! Let's solve the given problems step-by-step:

### (a) Compute the correlation coefficient and Interpret the result

The correlation coefficient [tex]\( r \)[/tex] measures the strength and direction of a linear relationship between the number of employees required [tex]\( y \)[/tex] and the number of departments [tex]\( x \)[/tex].

To find the correlation coefficient [tex]\( r \)[/tex], we use the formula:
[tex]\[ r = \frac{n \sum xy - (\sum x)(\sum y)}{\sqrt{ \left[ n \sum x^2 - (\sum x)^2 \right] \left[ n \sum y^2 - (\sum y)^2 \right] }} \][/tex]

Given:
- [tex]\( n = 10 \)[/tex]
- [tex]\( \sum x = 20 \)[/tex]
- [tex]\( \sum y = 40 \)[/tex]
- [tex]\( \sum x^2 = 100 \)[/tex]
- [tex]\( \sum y^2 = 120 \)[/tex]
- [tex]\( \sum xy = 180 \)[/tex]

Plugging in these values, we calculate the correlation coefficient as follows:

[tex]\[ r = \frac{10 \cdot 180 - 20 \cdot 40}{\sqrt{ \left[ 10 \cdot 100 - (20)^2 \right] \left[ 10 \cdot 120 - (40)^2 \right] }} \][/tex]

Simplifying the numerator:
[tex]\[ 10 \cdot 180 = 1800 \][/tex]
[tex]\[ 20 \cdot 40 = 800 \][/tex]
[tex]\[ 1800 - 800 = 1000 \][/tex]

Simplifying the denominator:
[tex]\[ n \sum x^2 - (\sum x)^2 = 10 \cdot 100 - 20^2 = 1000 - 400 = 600 \][/tex]
[tex]\[ n \sum y^2 - (\sum y)^2 = 10 \cdot 120 - 40^2 = 1200 - 1600 = -400 \][/tex]

Now:
[tex]\[ r = \frac{1000}{\sqrt{600 \cdot (-400)}} \][/tex]
Since we have a negative [tex]\( \sqrt{} \)[/tex] term (which results in an imaginary number), ultimately:
[tex]\[ r \approx (1.2498999054348719e-16 - 2.041241452319315j) \][/tex]

### Interpretation of the Result
The result is a complex number, which indicates that the relationship and the data provided may not suit typical linear correlation analysis, suggesting potential calculation/data issues or the need for different analytical methods.

### (b) Develop a linear regression equation

The linear regression line is given by:
[tex]\[ y = b_0 + b_1 x \][/tex]

Where:
[tex]\[ b_1 = \frac{n \sum xy - (\sum x)(\sum y)}{n \sum x^2 - (\sum x)^2} \][/tex]
[tex]\[ b_0 = \frac{\sum y}{n} - b_1 \left( \frac{\sum x}{n} \right) \][/tex]

Calculating [tex]\( b_1 \)[/tex]:
[tex]\[ b_1 = \frac{1000}{600} \approx 1.6666666666666667 \][/tex]

Calculating [tex]\( b_0 \)[/tex]:
[tex]\[ b_0 = \frac{40}{10} - 1.6666666666666667 \left( \frac{20}{10} \right) \][/tex]
[tex]\[ b_0 = 4 - 1.6666666666666667 \cdot 2 \approx 0.6666666666666665 \][/tex]

So the regression equation is:
[tex]\[ y = 0.6666666666666665 + 1.6666666666666667 x \][/tex]

### (c) Forecast the number of employees for 16 departments

To forecast the number of employees [tex]\( y \)[/tex] when [tex]\( x = 16 \)[/tex], we use the regression equation:
[tex]\[ y = 0.6666666666666665 + 1.6666666666666667 \cdot 16 \][/tex]

Calculating:
[tex]\[ y = 0.6666666666666665 + 26.666666666666668 \approx 27.333333333333336 \][/tex]

Therefore, the forecasted number of employees for 16 departments is 27.33 (approximately 27 employees).

In summary:
1. The correlation coefficient is a complex number, highlighting potential issues with data or method.
2. The regression equation is [tex]\( y = 0.6666666666666665 + 1.6666666666666667 x \)[/tex].
3. Forecast for 16 departments is approximately 27 employees.