What is the missing polynomial?

? - (20 - 4x - 5x²) = 20 - 7x²

A. 4x - 12x²
B. 4x - 2x²
C. 40 - 4x - 12x²
D. 40 - 4x - 2x²



Answer :

To find the missing polynomial [tex]\( ? \)[/tex], we start with the given equation:

[tex]\[ ? - (20 - 4x - 5x^2) = 20 - 7x^2 \][/tex]

First, we rearrange the equation to isolate the missing polynomial [tex]\( ? \)[/tex]:

[tex]\[ ? = (20 - 7x^2) + (20 - 4x - 5x^2) \][/tex]

Next, we combine like terms on the right-hand side of the equation:

- The constant terms: [tex]\( 20 + 20 = 40 \)[/tex]
- The linear terms: [tex]\( -4x \)[/tex]
- The quadratic terms: [tex]\( -7x^2 + -5x^2 = -12x^2 \)[/tex]

So, the polynomial [tex]\( ? \)[/tex] is:

[tex]\[ ? = 40 - 4x - 12x^2 \][/tex]

Therefore, the missing polynomial is:

[tex]\[ 40 - 4x - 12x^2 \][/tex]

Thus, the correct choice from the given options is:

[tex]\[ \boxed{40 - 4x - 12x^2} \][/tex]