Answer :

Sure, let's solve the division of two numbers expressed in scientific notation step by step.

We are given the expression:
[tex]\[ (3.6 \times 10^{-5}) \div (1.8 \times 10^2) \][/tex]

We can rewrite the division of the numbers in scientific notation. When we divide numbers in scientific notation, we can handle the coefficients and the powers of 10 separately:

[tex]\[ \frac{3.6 \times 10^{-5}}{1.8 \times 10^2} \][/tex]

Separate the coefficients (3.6 and 1.8) and the powers of 10:

[tex]\[ \frac{3.6}{1.8} \times \frac{10^{-5}}{10^2} \][/tex]

Calculate the division of the coefficients:

[tex]\[ \frac{3.6}{1.8} = 2 \][/tex]

Next, use the quotient rule for exponents to divide the powers of ten:

[tex]\[ \frac{10^{-5}}{10^2} = 10^{-5 - 2} = 10^{-7} \][/tex]

Therefore, combining the results we get:

[tex]\[ 2 \times 10^{-7} \][/tex]

In standard form, we write this as:

[tex]\[ 2.00 \times 10^{-7} \][/tex]

So, the result of [tex]\( \left(3.6 \times 10^{-5}\right) \div \left(1.8 \times 10^2\right) \)[/tex], in standard form, is:

[tex]\[ 2.00 \times 10^{-7} \][/tex]