What is the following sum?

[tex]\[5(\sqrt[3]{x}) + 9(\sqrt[3]{x})\][/tex]

A. [tex]\(14(\sqrt[6]{x})\)[/tex]

B. [tex]\(14\left(\sqrt[6]{x^2}\right)\)[/tex]

C. [tex]\(14(\sqrt[3]{x})\)[/tex]

D. [tex]\(14\left(\sqrt[3]{x^2}\right)\)[/tex]



Answer :

Sure, let's solve each part of the problem step-by-step.

Step 1: Calculate [tex]\( 5(\sqrt[3]{x}) + 9(\sqrt[3]{x}) \)[/tex].

When we add these terms together, we combine the coefficients of [tex]\(\sqrt[3]{x}\)[/tex]:

[tex]\[ 5(\sqrt[3]{x}) + 9(\sqrt[3]{x}) = (5 + 9)(\sqrt[3]{x}) = 14(\sqrt[3]{x}) \][/tex]

Thus,
[tex]\[ 5(\sqrt[3]{x}) + 9(\sqrt[3]{x}) = 14x^{1/3} \][/tex]

Step 2: Calculate [tex]\( 14(\sqrt[6]{x}) \)[/tex].

This is already in simplified form:
[tex]\[ 14(\sqrt[6]{x}) = 14x^{1/6} \][/tex]

Step 3: Calculate [tex]\( 14\left(\sqrt[6]{x^2}\right) \)[/tex].

We simplify the expression [tex]\(\sqrt[6]{x^2}\)[/tex], which means taking [tex]\(x^2\)[/tex] to the power of [tex]\(\frac{1}{6}\)[/tex]:

[tex]\[ \sqrt[6]{x^2} = (x^2)^{1/6} = x^{2/6} = x^{1/3} \][/tex]

So,
[tex]\[ 14\left(\sqrt[6]{x^2}\right) = 14x^{1/3} \][/tex]

Step 4: Calculate [tex]\( 14(\sqrt[3]{x}) \)[/tex].

This is already in simplified form:
[tex]\[ 14(\sqrt[3]{x}) = 14x^{1/3} \][/tex]

Step 5: Calculate [tex]\( 14\left(\sqrt[3]{x^2}\right) \)[/tex].

We simplify the expression [tex]\(\sqrt[3]{x^2}\)[/tex], which means taking [tex]\(x^2\)[/tex] to the power of [tex]\(\frac{1}{3}\)[/tex]:

[tex]\[ \sqrt[3]{x^2} = (x^2)^{1/3} = x^{2/3} \][/tex]

So,
[tex]\[ 14\left(\sqrt[3]{x^2}\right) = 14x^{2/3} \][/tex]

To summarize, the calculated expressions are:

1. [tex]\( 5(\sqrt[3]{x}) + 9(\sqrt[3]{x}) = 14x^{1/3} \)[/tex]
2. [tex]\( 14(\sqrt[6]{x}) = 14x^{1/6} \)[/tex]
3. [tex]\( 14\left(\sqrt[6]{x^2}\right) = 14x^{1/3} \)[/tex]
4. [tex]\( 14(\sqrt[3]{x}) = 14x^{1/3} \)[/tex]
5. [tex]\( 14\left(\sqrt[3]{x^2}\right) = 14x^{2/3} \)[/tex]

Therefore, the resulting terms are:

[tex]\[ (14x^{1/3}, 14x^{1/6}, 14x^{1/3}, 14x^{1/3}, 14x^{2/3}) \][/tex]