The polynomial [tex]\(10x^3 + 35x^2 - 4x - 14\)[/tex] is factored by grouping.

[tex]\[10x^3 + 35x^2 - 4x - 14 = 5x^2(\ \ ) - 2(x + 7)\][/tex]

What is the common factor that is missing from both sets of parentheses?

A. [tex]\(-2x - 7\)[/tex]
B. [tex]\(2x + 7\)[/tex]
C. [tex]\(-2x^2 + 7\)[/tex]
D. [tex]\(2x^2 + 7\)[/tex]



Answer :

To factor the polynomial [tex]\(10x^3 + 35x^2 - 4x - 14\)[/tex] by grouping, let's follow each step carefully:

1. Group the terms:
[tex]\[ (10x^3 + 35x^2) + (-4x - 14) \][/tex]

2. Factor out the common factors in each group:

- For the first group, [tex]\(10x^3 + 35x^2\)[/tex]:
[tex]\[ 10x^3 + 35x^2 = 5x^2(2x + 7) \][/tex]

- For the second group, [tex]\(-4x - 14\)[/tex]:
[tex]\[ -4x - 14 = -2(2x + 7) \][/tex]

3. Write it as a product of two terms:
[tex]\[ 10x^3 + 35x^2 - 4x - 14 = 5x^2(2x + 7) - 2(2x + 7) \][/tex]

4. Factor out the common binomial [tex]\((2x + 7)\)[/tex]:
[tex]\[ 10x^3 + 35x^2 - 4x - 14 = (2x + 7)(5x^2 - 2) \][/tex]

So, the common factor that appears in both sets of parentheses is [tex]\((2x + 7)\)[/tex]. Hence, the correct answer is:

[tex]\[ 2x + 7 \][/tex]