Simplify the following:

i) [tex]\(\sqrt{45} - 3\sqrt{20} + 4\sqrt{5}\)[/tex]

Solution:
[tex]\[
\begin{aligned}
& \sqrt{45} - 3\sqrt{20} + 4\sqrt{5} \\
&= \sqrt{3 \times 3 \times 5} - 3\sqrt{2 \times 2 \times 5} + 4\sqrt{5} \\
&= 3\sqrt{5} - 6\sqrt{5} + 4\sqrt{5} \\
&= \sqrt{5}
\end{aligned}
\][/tex]

ii) [tex]\(\frac{2+\sqrt{3}}{2-\sqrt{3}}\)[/tex]



Answer :

Certainly! Let's tackle part (i) of your question in detail:

To simplify the expression: [tex]\(\sqrt{45}-3 \sqrt{20}+4 \sqrt{5}\)[/tex]

Step-by-step solution:

1. Simplify each square root term individually:

- [tex]\(\sqrt{45}\)[/tex]:
[tex]\[ \sqrt{45} = \sqrt{9 \times 5} = \sqrt{9} \times \sqrt{5} = 3\sqrt{5} \][/tex]

- [tex]\(-3 \sqrt{20}\)[/tex]:
[tex]\[ -3 \sqrt{20} = -3 \times \sqrt{4 \times 5} = -3 \times \sqrt{4} \times \sqrt{5} = -3 \times 2 \sqrt{5} = -6 \sqrt{5} \][/tex]

- [tex]\(4 \sqrt{5}\)[/tex] is already in its simplest form.

2. Substitute the simplified terms back into the original expression:
[tex]\[ \sqrt{45} - 3 \sqrt{20} + 4 \sqrt{5} = 3 \sqrt{5} - 6 \sqrt{5} + 4 \sqrt{5} \][/tex]

3. Combine like terms (terms involving [tex]\(\sqrt{5}\)[/tex]):
[tex]\[ 3 \sqrt{5} - 6 \sqrt{5} + 4 \sqrt{5} = (3 - 6 + 4) \sqrt{5} = 1 \sqrt{5} = \sqrt{5} \][/tex]

So, the simplified form of the expression is:
[tex]\[ \sqrt{5} \][/tex]

Final Answer:
[tex]\[ \sqrt{45} - 3 \sqrt{20} + 4 \sqrt{5} = \sqrt{5} \][/tex]

Feel free to reach out if you have any questions on part (ii) or any other queries!