Answered

The value of the expression [tex]\(\frac{2x^2}{x} + x(100 - 15x)\)[/tex] when [tex]\(x = 5\)[/tex] is:

A. 119
B. 129
C. 135
D. 145



Answer :

Sure, let's break down the computation of the given expression [tex]\(\frac{2 x^2}{x} + x(100 - 15x)\)[/tex] when [tex]\(x = 5\)[/tex].

1. First Part: [tex]\(\frac{2 x^2}{x}\)[/tex]
- Substitute [tex]\(x = 5\)[/tex]:
- [tex]\(\frac{2 (5)^2}{5}\)[/tex]
- Calculate the exponent: [tex]\((5)^2 = 25\)[/tex]
- Now the expression is [tex]\(\frac{2 \cdot 25}{5}\)[/tex]
- Perform the multiplication in the numerator: [tex]\(2 \cdot 25 = 50\)[/tex]
- Finally, divide by 5: [tex]\(\frac{50}{5} = 10\)[/tex]

2. Second Part: [tex]\(x (100 - 15x)\)[/tex]
- Substitute [tex]\(x = 5\)[/tex]:
- [tex]\(5 (100 - 15 \cdot 5)\)[/tex]
- Calculate the multiplication inside the parentheses: [tex]\(15 \times 5 = 75\)[/tex]
- Now the expression inside the parentheses is: [tex]\(100 - 75 = 25\)[/tex]
- Perform the multiplication: [tex]\(5 \cdot 25 = 125\)[/tex]

3. Sum of the Two Parts
- Add the results from the two parts:
- [tex]\(10 + 125 = 135\)[/tex]

Thus, the value of the expression when [tex]\(x = 5\)[/tex] is [tex]\(\boxed{135}\)[/tex].