Matemática:

Suponha que um avião decole sob um ângulo constante de 18°.

| Ângulo | Seno | Cosseno | Tangente |
|--------|------|---------|----------|
| 18° | 0,31 | 0,95 | 0,32 |



Answer :

Vamos analisar um avião que decola formando um ângulo constante de [tex]\( 18^\circ \)[/tex] em relação ao solo. Para compreender melhor o problema, podemos utilizar as funções trigonométricas seno ([tex]\( \sin \)[/tex]), cosseno ([tex]\( \cos \)[/tex]) e tangente ([tex]\( \tan \)[/tex]) aplicadas a este ângulo.

Assim, de acordo com os valores fornecidos:

- O valor do seno ([tex]\(\sin\)[/tex]) de [tex]\( 18^\circ \)[/tex] é 0,31.
- O valor do cosseno ([tex]\(\cos\)[/tex]) de [tex]\( 18^\circ \)[/tex] é 0,95.
- O valor da tangente ([tex]\(\tan\)[/tex]) de [tex]\( 18^\circ \)[/tex] é 0,32.

Vamos explicar brevemente o significado desses valores e como eles podem ser interpretados no contexto do problema:

1. Seno ([tex]\(\sin 18^\circ = 0,31\)[/tex]):
- O seno de um ângulo em um triângulo retângulo é definido como a razão entre o cateto oposto ao ângulo e a hipotenusa.
- Ou seja, para um triângulo retângulo onde o ângulo de decolagem é [tex]\( 18^\circ \)[/tex], [tex]\( \sin 18^\circ = 0,31 \)[/tex] significa que, para uma hipotenusa de comprimento 1, o cateto oposto terá comprimento 0,31.

2. Cosseno ([tex]\(\cos 18^\circ = 0,95\)[/tex]):
- O cosseno de um ângulo em um triângulo retângulo é a razão entre o cateto adjacente ao ângulo e a hipotenusa.
- Para um triângulo retângulo com um ângulo de decolagem de [tex]\( 18^\circ \)[/tex], [tex]\( \cos 18^\circ = 0,95 \)[/tex] significa que, para uma hipotenusa de comprimento 1, o cateto adjacente terá comprimento 0,95.

3. Tangente ([tex]\(\tan 18^\circ = 0,32\)[/tex]):
- A tangente de um ângulo é a razão entre o cateto oposto e o cateto adjacente.
- Portanto, [tex]\( \tan 18^\circ = 0,32 \)[/tex] indica que o comprimento do cateto oposto é 0,32 vezes o comprimento do cateto adjacente.

Estes valores podem ser usados para calcular outras grandezas relacionadas ao movimento do avião, como a altura alcançada após certa distância percorrida na pista de decolagem, e são fundamentais em várias aplicações práticas da trigonometria em física e engenharia.

Espero que esses conceitos e explicações ajudem a entender melhor como os valores trigonométricos foram determinados e a relevância deles para a descrição do movimento do avião.